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ABSTRACT. The algorithm of solving the external three-dimensional Dirichlet boundary value problem for a
harmonic function by the probabilistic method is given. The algorithm consists of the following stages: 1) transition
from an infinite domain to a finite domain by an inversion; 2) consideration of a new boundary problem on the basis
of Kelvin’s theorem for the obtained finite domain; 3) application of the probabilistic method to solving a new
problem, which in turn is based on a computer simulation of the Wiener process; 4) definition of the solution of the
statement problem for the infinite domain by the solution of the new problem. For illustration an example is considered.
© 2010 Bull. Georg. Natl. Acad. Sci.
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Let D be an infinite domain in the Euclidian space E3, bounded by one closed piecewise smooth surface S (i.e.,
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  ), where each part jS  is a smooth surface). Besides, we assume: 1) equations of the parts jS  are given; 2)

edges of the surface S are piecewise smooth contours; 3) for the surface S it is easy to show that a point

3321 ),,( Exxxx   lies in D  or not. For the Laplace equation we consider the Dirichlet boundary value problem.

Problem A. Find a function )()(),,()( 2
321 DCDCxxxuxu   satisfying the conditions:
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i ix
 is the Laplace operator and ),,()( 321 yyygyg   is a continuous function on S.

It is known [1,2] that Problem A is correct, i.e., its solution exists, is unique and depends on data continuously.
The third condition of Problem A is essential for the uniqueness of the solution. It should be noted that the
laboriousness of solving problems sharply increases along with the dimension of the problems considered. Therefore,
as a rule, one fails to develop standard methods for solving a wide class of multidimensional problems with the same
high accuracy as in the one-dimensional case. In the example the exact solution of Problem A for a disk is written by
one-dimensional Poisson’s integral and in the case of sphere by two-dimensional Poisson’s integral [2-4].
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Since function harmonicity is invariable under the linear transformation of the Cartesian coordinates system,
therefore without loss of generality we assume that the origin of coordinates O(0,0,0) is inside a finite domain B
bounded by the surface S.

In Problem A the domain D is infinite, therefore the direct application of the probabilistic method to its solving is
impossible [5,6]. In order to solve Problem A by the probabilistic method, we convert from the infinite domain D to a

finite domain *D  with a boundary *S  by means of the inversion [7]
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with respect to a sphere surface aS . In (1) 0x  is a fixed inner point of the domain B, and a is the radius of the sphere

aS  with the center at 0x . On the basis of the above denoted, for simplicity we can assume that 0x =(0,0,0), a=1. Thus,
in our case from (1) we have
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It should be noted that under the inversions (2) and (3) the infinite domain D is transformed into the finite domain
*D , while the surface S is transformed into *S  and vice versa, i.e., x , Dx  and *D . In particular, the, the

point x  goes to *)0,0,0( DO  . Therefore the functions u(x) and g(y) are transformed into the functions
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 gg , respectively, where *

321 ),,( D , *
321 ),,( S .

It is known [2,7] that the function is not harmonic in the domain *D . We can remove the noted defect of the inversion
(2) if we apply Kelvin’s theorem [2,7].

Theorem 1. If a function ),,( 321 xxxu  is harmonic in the domain D, then the function
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is harmonic in the domain *D , which is obtained from the domain D by the inversion (2).
Remark 1. It is shown that the point 0  is a removable singular point [2,7].

On the basis of Theorem 1 it is easy to see that actually the function ),,( 321
* u  is the solution of the following

boundary problem.

Problem A*. Find a harmonic function )(* u  in *D  satisfying the conditions:

,0)(*  u  *D .

)(1)()( ** 


 ggu  , *S ,

where )(g  is the given continuous function on *S .
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It is evident that the piecewise smooth surface *S  has the form  *

1
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  , where the equations of the parts

*)( jS  are defined by the equations of the parts jS  and inversion (3). Since the domain *D  is bounded by one

closed piecewise smooth surface *S , therefore for solving Problem AA* we can apply the probabilistic method.

In particular, if we want to find the value of the solution u(x) of Problem A at a point x )( Dx , first of all we have

to find the image   of x by means of (2), and then find the solution )(* u  to Problem A at the point  . Finally, on
the basis of (4) we have

x
uuxu )(),,()(
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where Dx , *D  and 2x

xi
i   )3,2,1( i .

Thus, actually for definition of the value of the solution to Problem A at the point x we have the formula (5). It is
easy to see that for the function u(x), defined by (5), the conditions of Problem A are fulfilled.

The essence of solving Problem A* by the probabilistic method consists in the following.

It is known [5] that the probabilistic solution of Problem A* at the fixed point *D  has the form

))(()( ** tgMu   , (6)

where ))((* tgM   is the mathematical expectation of the values of the boundary function )(* g  at the random

intersection points of the Wiener process and the boundary *S ; t is the moment of first exit of the Wiener process

))(),(),(()( 321 tttt    from the domain *D . It is assumed that the starting point of the Wiener process is always
*

0302010 ))(),(),(()( Dtttt   , where the value of the desired function is being determined. If the number N of

the random points *
321 ),,( Siiii    ( 1,2, , )i N   is sufficiently large, then according to the law of large

numbers, from (6) we have
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or )(lim)( **  Nuu   for N , in the probabilistic sense. Thus, in the presence of the Wiener process we calculate

the approximate value of the probabilistic solution of the Problem A* at the point *D  by formula (7).
For realization of the Wiener process we use the three-dimensional generator (see [6]), which gives three

independent values )(),(),( 321 twtwtw . In the considered case the Wiener process is realized by computer simulation.
In particular, for the computer simulation of the Wiener process we use the following recursion relations:

 ktwtt kkk )()()( 1111   ,

 ktwtt kkk )()()( 2122   , (8)

 ktwtt kkk )()()( 3133   , ),2,1( k ,

with the help of which coordinates of a current point ))(),(),(( 321 kkk ttt   are being determined. In (8)

)(),(),( 321 kkk twtwtw  are three normally distributed independent random numbers for k-th step, with zero means and
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variances one; k  is a number of the quantification and when k , then the discrete Wiener process approaches
the continuous Wiener process. In the computer the random process is simulated at each step of the walk and
continues until it crosses the boundary. In our case the noted random numbers are generated in the environment of
the MATLAB system.

Example. The exterior of the unit sphere 1: 2
3

2
2

2
11  xxxS  with the center at the origin O(0,0,0) is taken in the

role of the domain D, where ),,( 321 xxxx  is a current point of the surface 1S . 01)(  yyg  is taken as boundary

function, where )(),,( 1321 SSSyyyy  , *0
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0 ),,( D  . It is evident that for the boundary function g(y)

the exact solution of Problem A is 01)(  xxu . In the considered case on the basis of (2) and (3), for the

boundary Problem A* we have 2
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While solving Problem A* to define the intersection points ),,( 321
iiii    ( 1,2, , )i N   of the Wiener process

and of the surface *S , we operate in the same way as is used in [6]. During the realization of the Wiener process, for

each current point )( kt , defined from (8), its location with respect to the boundary *S  is checked, i.e., for the point

)( kt  the value )()()()( 2
3

2
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2
kkkk ttttd    is calculated and the conditions: 1d , 1d  or 1d  are

checked. If 1d  then *)( Stk   and )( k
i t  . If 1d , then *)( Dtk  , and If 1d , then *)( Dtk  . Let

*
1)( Dtk   for the moment 1 ktt , and *)( Dtk   for the moment ktt  . In this case, for an approximate definition

of the point i , a parametric equation of a line l passing through the points )( 1kt  and )( kt  is written in the first

place. After this the intersection points *  and **  of the line l and of the surface *S  are defined. In the role of the

point i  from the points *  and **  a point is taken for which  )( kt  is minimal. In numerical experiments

)10/1,0,0(0   is taken.

In Table 1: N is the Wiener process realization number for the given points Dxxxx jjjj  ),,( 321  )2,1( j ;

)()(1
jjj xuxu  , where )(1

jxu  is the approximate solution of problem A at the point jx , which is defined by

formula (5).

Table 1.

The results of experiments

 )1,1,1(1 x  )001.1,0,0(2 x  

100k  200k  100k  200k  
N 1  1  2  2  
 

1000 
4000 
40000 

200000 
 

 
2.94E-05 
2.92E-05 
2.71E-05 
2.32E-05 

 

 
5.05E-05 
3.79E-05 
2.15E-05 
1.79E-05 

 

 
8.44E-05 
8.41E-05 
8.39E-05 
8.01E-05 

 

 
4.78E-05 
4.64E-05 
4.28E-05 
3.85E-05 

 

From Table 1 it is seen that   j , when N , in the probabilistic sense.
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maTematika

harmoniuli funqciisTvis dirixles samganzomilebiani
gare sasazRvro amocanis albaTuri meTodiT amoxsnis
Sesaxeb

m. zaqraZe*, z. sanikiZe*, z. Tabagari*

* n. musxeliSvilis gamoTvliTi maTematikis instituti, Tbilisi

(warmodgenilia akademikos n. vaxanias mier)

mocemulia harmoniuli funqciisTvis dirixles samganzomilebiani gare sasazRvro amocanis
albaTuri meTodiT amoxsnis Semdegi algoriTmi:

1) usasrulo aridan sasrul areze gadasvla inversiis saSualebiT;
2) kelvinis Teoremis safuZvelze axali amocanis ganxilva mocemuli sasruli arisaTvis;
3) axali amocanis amoxsnisaTvis albaTuri meTodis gamoyeneba, romelsac Tavis mxriv safuZvlad

udevs vineris procesis kompiuteruli modelireba.
4) usasrulo arisaTvis dasmuli amocanis amonaxsnis gansazRvra axali amocanis amonaxsnis

saSualebiT.
ilustraciisTvis ganxilulia magaliTi.
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