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Let 1 2, , , nX X X  be a sample of independent observations of a nonnegative random value X with a distribution

function  F x . In problems of the theory of censored observations the sample values are pairs of random values

 i i iY X t   and  i i iZ I Y X  , 1,i n , where it  are given numbers ( i jt t  for i j ) or random values

independent of iX , 1,i n . Throughout the paper  I A  denotes the indicator of the set A.

We will consider here several different cases: the observer has access only to random values  i i iI X t   ,

2 1
2i F
it c

n


 , 1,i n ,   inf 0 : 1Fc x F x     .

The problem consists in estimating distribution functions  F x  by the sample 1 2, , , n   . Such a problem
arises, for example, in corrosion investigations (see [1] where an experiment connected with corrosion is described).

As estimate for  F x  we consider an expression of the form
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where   0K x   is some weight function (kernel) and    K x K x  , x    .   h h n  is a sequence of

positive numbers converging to zero.
1. In this section, we give asymptotic unbiased and consistency conditions and theorem on a limiting distribution

 ˆ
nF x .

Lemma. Assume that

10.  K x  is some distribution density with bounded variation. If nh   , then

   1 2 1 21 1 1 1
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  (2)

uniformly with respect to  0, Fx c , 1m , 2m  are natural numbers.

Proof. Let  P x  be a uniform distribution function on  0, Fc  and  nP x  be an empirical distribution function of

the “sample” 1 2, , , nt t t , i.e.    1

1

n

n j
j
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  . It is obvious that
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We have
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  . (4)

Applying the integration by parts of formula and taking (3) into account, we obtain (2) from (4).

Without loss of generality we assume below that the interval    0, 0,1Fc  .

Theorem 1. Let  F x  be continuous and the conditions of the lemma be fulfilled. Then the estimate (1) is

asymptotically unbiased and consistent at all points  0,1x . Moreover,  ˆ
nF x  is distributed asymptotically

normally, i.e.
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where d denotes convergence in distribution, and  0,1N  a random value having a normal distribution with mean
0 and variance 1.

Proof. From the lemma we have
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and, as n  ,
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Hence it follows that    n̂EF x F x ,  0,1x  as n  .
Analogously, it is not difficult to show that
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This readily implies that

          2 2ˆ ~ 1nnh Var F x x F x F x K u du    (6)

as  0,1x .

Thus  ˆ
nF x  is a consistent estimate for  F x ,  0,1x , and therefore,     1 2

ˆ ˆ 1n nP F x F x  , 1 2x x ,

 1 2, 0,1x x  .

Now we will establish that  ˆ
nF x  is distributed asymptotically normally. Since by virtue of (5),    2 2nF x F x ,

it remains for us to verify the condition of Lyapunov’s Central Limit Theorem for  1nF x . Let us denote
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We have

       2 21

1 1

2 , max
n n

j
j j j x R

j j

x t
E E M nh K F t M K x

h
  
  


 

 
    

 
  .

Taking (2) into account, from this inequality we find
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  . (8)

Using the relation (6) and the inequality (8) we obtain   2nL O nh


 
  

 
, which means that (7) holds.

2. Uniform consistency. In this section, we define the conditions under which the estimate  ˆ
nF x  converges

uniformly in probability (almost surely) to a true  F x .

We introduce the Fourier transform of  K x :
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   itxt e K x dx




 
and assume that

20.  t  is absolutely integrable. Following E. Parzen [2]  1nF x  can be written in the form
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Denote

   ˆ ˆsup , ,1 , 0 1
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         .

Theorem 2. Let  K x  satisfy conditions 10 and 20.

(a) Let  F x  be continuous and 
1
2

nn h  , then
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  , 2p  , then 0nD   almost surely..

Proof. We have
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This and (5) imply

 2sup 1 0
n

n
x

F x


  (10)

i.e., due to uniform convergence, for any 0 0  , 00 1  , and sufficiently large 0n n  we have  2 01nF x  

uniformly with respect to nx .
Therefore
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From here owing to Gelder’s inequality, we have
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Then from (11) we can write
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Further, using Whittle’s inequality [3] for moments of quadratic form, we obtain
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From here follows
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uniformly with respect to  ,u   , and also clear that,
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, (14)

uniformly with respect to  ,u   . After combining the relations (12), (13) and (14), we obtain
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Further we obtain
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The second summand in the right-hand part of (16) tends, by virtue of (10), to zero, while the first summand is
estimated as follows:
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and, by virtue of (9),

2 0nS  . (18)

Now let us consider 1nS . Note that
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Assume that 0   and divide the integration domain in (19) into two domains u   and u  . Then
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By a choice of 0   the first summand in the right-hand part of (20) can be made arbitrarily small. After choosing
0   and making n tend to infinity, we obtain that the second summand tends to zero.
Thus

1lim 0nn
S


 . (21)

Finally, the proof of the theorem follows from the relations (15)-(18) and (21).
Remarks.

1) If   0K x  , 1x   and 1  , i.e.,  ,1n h h   , then 2 0nS  .
2) Under the conditions of Theorem 2,

 
   

,

ˆsup 0n
x a b

F x F x


 

in probability (almost surely) for any fixed interval    , 0,1a b   since there exists 0n  such that  , na b   , 0n n .

Let us assume that h n  , 0  . The conditions of Theorem 2 are fulfilled:



On the Estimation of a Distribution Function by an Indirect Sample. I 11

Bull. Georg. Natl. Acad. Sci., vol. 4, no. 3, 2010

1
2

nn h   if 1
2

 

and

2

1

p
p

n
n

n h
  



    if  20
2

p
p




  ,   2p  .

3. Estimation of moments. In the considered problem there naturally arises the question of estimation of the

integral functional of  F x , for example, of moments m , 1m  :
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As estimates for m  we will consider the statistics
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Theorem 3. Let  K x  satisfy condition 10 and, in addition to this,   0K x   outside the interval  1,1 . If

nh    as n   , then ˆnm  is an asymptotically unbiased, consistent estimate for m  and, moreover,,
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Proof. Since  K x  has  1,1  as a carrier, from (5) it follows that
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uniformly with respect to  ,1x h h  .
From this and the lemma we have
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By Lebesgue’s theorem on majorized convergence, from (22) it follows that
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Therefore ˆnm  is an unsymptotically unbiased estimate for m .
Further, analogously to (22) it can be shown that
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where
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By the same Lebesgue’s theorem we see that
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Therefore (23) and (24) imply that ˆ P
nm m  .

To complete the proof of the theorem it remains to show that the statistics  ˆ ˆnm nmn E   are asymptotically
distributed normally with mean 0 and variance 2 . For this it suffices to show that the Lyapunov fraction 0nL  .
Indeed,
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The theorem is proved.
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