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ABSTRACT. The problem of estimation of a distribution function is considered when the observer has access

only to some indicator random values. Some basic asymptotic properties of the constructed estimates are studied. ©
2010 Bull. Georg. Natl. Acad. Sci.
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Let X|,X,,...,X, beasample of independent observations of a nonnegative random value X with a distribution
function F (x) In problems of the theory of censored observations the sample values are pairs of random values

Y,=(X,At;) and Z,=1(Y;,=X,), i=1,n, where ¢ are given numbers (#; #¢; for i+ j) or random values

1

independent of X, i = L_n Throughout the paper / (A) denotes the indicator of the set 4.

We will consider here several different cases: the observer has access only to random values &; =/ (X ;< ti),

The problem consists in estimating distribution functions F (x) by the sample &;,&,,...,&,. Such a problem
arises, for example, in corrosion investigations (see [1] where an experiment connected with corrosion is described).

As estimate for £ (x) we consider an expression of the form

0, x<0,
E (x)=1F, (x)F) (x), 0<x<cp, M
1, xX2cp,
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where K(x) >0 is some weight function (kernel) and K(x) :K(—x), —0 < X <00, {h = h(n)} is a sequence of

positive numbers converging to zero.
1. In this section, we give asymptotic unbiased and consistency conditions and theorem on a limiting distribution

F, (x)
Lemma. Assume that

1°. K(x) is some distribution density with bounded variation. If nh — «, then

1 C m -1 xX—1; my—1 _ 1 t m -1 xX—u my—1 1
—YK [T]JF (t,)=—| & (TJF (u) du+0(—hj @

nh = cph o n

uniformly with respect to x € [0, cF], my, m, are natural numbers.

Proof. Let P(x) be a uniform distribution function on [0, cF] and P, (x) be an empirical distribution function of

n
the “sample” #,1,,...,1,, i.e. B, (x)= n! ZI(tj < x) . It is obvious that
=

sup Pn(x)—P(x)|= sup |— |n 2L N2 P 3)
0<x<cy 0<x<cep |1 Cp crp| 2m
We have
1 & f x—t 1 1 “ f x—u 1
— ) K™ LIF™ () —— | K™ F™ u) du=
nh “= h cph h

:icfﬂl—l(%jw-‘(w a(B, ()P (). @

Applying the integration by parts of formula and taking (3) into account, we obtain (2) from (4).

Without loss of generality we assume below that the interval [O, cF] = [0,1] .
Theorem 1. Let F(x) be continuous and the conditions of the lemma be fulfilled. Then the estimate (1) is

asymptotically unbiased and consistent at all points xe[O,l]. Moreover, ﬁ'n (x) is distributed asymptotically

normally, i.e.
ik (F, (x)= BF, (x))o ™" (x) =5 N (0,1),
o? (%)= F (x)(1-F (x)) [ K* (u) du,

where d denotes convergence in distribution, and N (0,1) a random value having a normal distribution with mean

0 and variance 1.
Proof. From the lemma we have

1

K(f)p(xm)dHo(th, an(x)zéjK(x;udeO(ih} )

n n
0

ER, (x) =

=
x‘”_,x‘x

and, as n — oo,
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1

R[] o (0)-

0

L xe(01)

1
—, x=0, x=1
2

K(¢)F (x+th)dt = F (x)-Fy (x).

&‘T_}&\X

Hence it follows that Eﬁn (x) > F(x), xe [0,1] as n— o,
Analogously, it is not difficult to show that

1

Var F,(x)= #IKz[x;qu(u)(l—F(u)) du+0 ﬁ Fz_nz(x).

This readily implies that
nh Var ﬁn (x)~0'2 (x)zF(x)(l—F(x))J‘K2 (u) du 6)

as xe[O,l].

Thus F (x) is a consistent estimate for F(x), x€[0,1], and therefore, P{ﬁn (%)< E, (x )} -1, x <X,

n
X, X, € [O,l] .
Now we will establish that 13" (x) is distributed asymptotically normally. Since by virtue of (5), 5, (x) —>F, (x) ,

it remains for us to verify the condition of Lyapunov’s Central Limit Theorem for £, (x) Let us denote

n=n;(x)= (nh)_] K(%tlj & and show that

L, = Zn:E|le _Enj|2+5 (Var F, (x))_ _g 50, §>0. o

J=1

We have

S Eln,—En [ <201 () ¢ ik(x;tf JF(tj ) M =maxK (x).
=1

Taking (2) into account, from this inequality we find

Zn:E|nj —Enj|2+5 <q (nh)_(]+5). ®)

j=1
s
Using the relation (6) and the inequality (8) we obtain L, = O (nh) 2 |, which means that (7) holds.

2. Uniform consistency. In this section, we define the conditions under which the estimate 13" (x) converges
uniformly in probability (almost surely) to a true F (x) .
We introduce the Fourier transform of K (x):
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and assume that

2°, go(t) is absolutely integrable. Following E. Parzen [2] F|, ( x) can be written in the form

t
1 —iu =~ 1 i L
£, (x) eyl I "o (u) EZSJ-e b du
e =1
Thus
© x n t
1 —iu — 1 iu =~
A, (x) Eﬂn(x)—gje "o (u) EZ(Q—F(Q)) e " du
—00 J=1
Denote
d, = sup |F, (x)—Eﬁn(x)‘, Q, =[h”‘,l—h“} , O<a<l,

xeQ,

Theorem 2. Let K(x) satisfy conditions 1° and 2°.
1

(a) Let F(x) be continuous and nEhn — o0, then

D, = sup

xeQ,

F, (x)- F (x)| >0,

© P
(b) If Zn 2h? <o, p>2,then D, -0 almost surely.

n=1

Proof. We have

1] B —p*! 0
supﬂ[l—;.([]([xhuj du | < J. K(u) du+ :!._K(u) du—0. ©)

—0 pol

This and (5) imply

sup |F; -1—>0
xeg§| 2 ()] (10)
i.e., due to uniform convergence, for any &, >0, 0< g, <1, and sufficiently large n2>n, we have F,, (x) 21-¢g,

uniformly with respectto x€Q, .
Therefore

d, < (1-50) " swp|Fy, (x)~ EF, ()] < (1-e0) "=l (u)] — du, i =&-F (1)),

xeQ, 2

From here owing to Gelder’s inequality, we have

1 1
(27)" (nh)"

’ r
du (“qo(u)| du)q, —+$=l, p>2.

t.
& _ iu;’
Z’Ue

Jj=1

dl <(1-g)”"

Jlow)

Therefore
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Ed?

where

(11)

- 1
c(s,p,go) = (1—80) 4
Denote

t,—t
A(u)=200{[ = N 0l
.j’k h
Then from (11) we can write

P
P <92
Ed} <22 ¢(g,,

{H?” )| [EA(u) % du+”§0(u)| E|A(u)—EA(u)|§ du}

. (12)
Further, using Whittle’s inequality [3] for moments of quadratic form, we obtain

E|A(u)_EA(u)|§gzz”c(’;j[c(p)]]z {ZCOSZ((”;”‘H v (p)A%(p )f,
where

ij

From here follows

E|4(u)-EA(u)| =0{n2},
uniformly with respect to u (—oo,oo) and also clear that

(13)
P P
|EA(u)|2 =0|n? | (14)
uniformly with respect to u € (—oo 00) . After combining the relations (12), (13) and (14), we obtain
1
Ed? =0 — | P> 2.
(Vn )
Therefore
P (x)- EF, (x)ZS}s S (15)
{ern " ‘ g? (\/; h)p
Further we obtain
sup ‘EF F(x)‘ < (sup |EF] )-F(x |+ sup |l By, (x )|J
xeQ, —& xeQ)

(16)
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The second summand in the right-hand part of (16) tends, by virtue of (10), to zero, while the first summand is
estimated as follows:

sup |EF,, (x) = F(x)| < S, +5,, +0(LJ, (17)
xeQ, nh
1]
S = —j F(y)-F(x))K x_yJ &),
R Y (r)=F () ( n )@

and, by virtue of (9),

S,, = 0. (18)
Now let us consider ), . Note that
S, <supj F(x)| L g[x=> dy = sup I x— u)—F(x)| Lok[™) au<
0<x<1 h h 0<x<] h h
<supI|Fx u | — K( j du . (19)
0<x<I h

Assume that § >0 and divide the integration domain in (19) into two domains |u| <9 and |u| >0 . Then

S, < sup |F(x—u)—F(x)| 1 K(Zj du+ sup I x—u) | — K( j du <
0<x<1 h h 0<x<I h
‘U‘Sﬁ ‘ ‘ >6
<supsup F(x—u)—F(x)| +2 j K(u) du. (20)
xeRMS& ‘ ‘ 5
ul>2
h

By a choice of 6 >0 the first summand in the right-hand part of (20) can be made arbitrarily small. After choosing
S >0 and making n tend to infinity, we obtain that the second summand tends to zero.
Thus

lim S, =0. @n

n—x0

Finally, the proof of the theorem follows from the relations (15)-(18) and (21).

Remarks.
DIf K(x)=0, |x|21 and a =1, i, Q, =[h1-h], then S,, =0.
2) Under the conditions of Theorem 2,
sup [F;, (x) = F (x)| >0
xe[a,b]

in probability (almost surely) for any fixed interval |a,b| < |0,1| since there exists n, such that |a,b|cQ,, n>n,.
0 n 0

Let us assume that z=n"", y >0 . The conditions of Theorem 2 are fulfilled:
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I
> . 1
n%h, — oo 1f;/<E

and
© P )
Zn 2P <o if 0<y<BZ) p>2.
= 2p
n=l1

3. Estimation of moments. In the considered problem there naturally arises the question of estimation of the
integral functional of F (x), for example, of moments p,,, m>1:

1

Ly =mjtm_] (1-F(r)) dr.

As estimates for ,, we will consider the statistics

—h

. ms . 1 ()
. =1_;Z§J ;J't’” 'K h] Fyl(t) dt.
= )

Theorem 3. Let K(x) satisfy condition 1° and, in addition to this, K(x) =0 outside the interval [—1,1]. If

nh—> o as n—> o, then [i,, is an asymptotically unbiased, consistent estimate for , and, moreover,

1

\/;(ﬁan—Eﬁnm) d N(O,l), o= m2j;2m‘2F(1)(1—F(t)) dt.

0

Proof. Since K (x) has [—1,1] as a carrier, from (5) it follows that
Ay, (n)=1+0| =

nh

uniformly with respect to x [h, 1- h] .

From this and the lemma we have

. "< 1T (170 e (t-u . 1
E,unm =1_;;F(tj);.!:tm ]K(T]JFZn] (t)dtzl_m.!: ;IK( i jF(u)du " ]dt+0(ﬁj:

0

=1_m]jhUK(v)F(r+vh) dv}m‘]dHO(ﬁj = l—mjtm_] [jK(u)F(t+vh)dv]dt+0(h)+0(ﬁj. 22)

h

By Lebesgue’s theorem on majorized convergence, from (22) it follows that

1 1
Eﬁnm—>1—mJ.F(t) ! dt=mItm_](l—F(t)) dt=p,, m>1, (23)
0 0

Therefore fi,, is an unsymptotically unbiased estimate for g, .

Further, analogously to (22) it can be shown that

7 1

Var ﬁnm=m7jF(t)(l—F(t)) zzm-{/c(l%—lj—/c(l—%ﬂz dt+o(ﬁj+o L

0 n (nh)2

where
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By the same Lebesgue’s theorem we see that
1
n Var fy,, ~o®=m’ [P 2F () (1-F (1)) dr. (24)
0

Therefore (23) and (24) imply that 4 —F— 4 .
To complete the proof of the theorem it remains to show that the statistics Jn ( Lo — E [y, ) are asymptotically

distributed normally with mean 0 and variance o . For this it suffices to show that the Lyapunov fraction L,—0.
Indeed,

_h 246

l]j ;m“K(t_tf JF;; dt
h . h

s s s
(Var,&nm )_(HE] < c’,n_]_‘s (Var,&nm )_[HEJ = O{n 2 J

246

(Varpi,, )_(ng <

L= o (249) 246 Zn:‘fj _ F(tj)
=1

< ‘76”_(2+5)Zn:‘5j ~F ()
Jj=1

The theorem is proved.

‘2+5
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