
saqarTvelos  mecnierebaTa  erovnuli  akademiis  moambe,  t. 5, #2, 2011

BULLETIN  OF  THE  GEORGIAN  NATIONAL  ACADEMY  OF  SCIENCES,  vol. 5, no. 2, 2011
 

© 2011  Bull. Georg. Natl. Acad. Sci.

Mathematics

On the Estimation of a Distribution Function by an Indirect
Sample. II

Elizbar Nadaraya*, Petre Babilua**, Grigol Sokhadze**

* Academy Member, I. Javakhishvili Tbilisi State University
** I. Javakhishvili Tbilisi State University
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Here as a sample we consider a sequence of random indicators      1 1 1 2 2 2, , , n n nI X t I X t I X t        ,

where 1 2, , , nX X X  are independent, equally distributed nonnegative random values with a distribution function

 F x , 2 1
2i F
it c

n


 , 1,i n ,   inf 0 : 1Fc x F x     . The problem consists in estimation of the distribution

function  F x  by using the sample 1 2, , , n   .

As an estimate for  F x  we consider an expression of the form
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where   h h n  is a sequence of positive numbers tending to zero, while the kernel   0K x   is chosen so that it

would be a function of finite variation and satisfy the conditions

       , 1, 0 1K u K u K u du K u for u     . (1)
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Lemma 1 ([1]). If nh    as n   , then

   1 2 1 21 1 1 1

1 0

1 1 1Fcn
j

j
j F

x t x uK F t K F u du O
nh h c h h nh

      



           
    

 

uniformly with respect to  0, Fx c ; 1 , 2  are natural numbers. In the sequel, it is assumed that the interval

   0, 0,1Fc  .

Theorem 1. Let    0g x  ,  ,1x a a  , 
10
2

a  , be a measurable and bounded function.

(a) If   0F a   and 2nh   as n   , then

       
1

2
1

ˆ ˆ 0,
a

d
n n n

a

T n g x F x EF x dx N 


     , (2)

        
 1
1,
1

g x g x F x t
t t

  


.

(b) If   0F a  , 2nh  , 4 0nh   as n    and  F x  has bounded derivatives up to second order, then

       
1

2
1

ˆ 0,
a

d
n n

a

T n g x F x F x dx N 


    

as n   , where  20,N   is a random value having a normal distribution with zero mean and variance

 
1

2 2
a

a

g u du


  .

Remark 1. We have introduced 0a   in (2) to avoid the boundary effect of the estimate  n̂F x , i.e., the estimate

 n̂F x  being a kernel type estimate behaves near the boundary of the interval [0,1] worse in the sense of bias order than

inside any interval    ,1 0,1a a  ,  10
2

a  .

Proof of Theorem 1. We have
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where      1
2 1 2n ng u g u F u .

Hence
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  . (3)

Since  K u  has  1,1  as a support and 0 1a u a    ,  we have  2
11nF u O
nh

    
 

 and

   2 1
1g u g u O
nh

    
 

 uniformly with respect to  ,1u a a   [1]. Therefore from (3) we have
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By virtue of Lemma 1 it can be easily shown that
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Therefore
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Since from      11
4

F u F u   and from inequalities   1g u c ,   
    

1

1 1
F u

F a F a
 

 
, 1a u a   ,

it follows that  1 2g u c , we have
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  , (5)

with 0a t   and 1 0a t   . The first inequality is obvious, while the second one follows from the inequalities

0 t a   and 10
2

a  .

Thus
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By the Lebesgue theorem on bounded convergence, from the latter formula and (5) we obtain

 1 0 forn n   . (6)

Analogously,

 2 0 forn n   . (7)

Now let us establish that

      
21 1 1

2 2 2
1

1a a a
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u tF t dt K g u du g u du
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as n  .
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We have

         
21 1 1

2 2 2
1 1

1a a a

a a a

u tF t dt g u K du F t g t dt
h h

 
  

          
  

      
1 1

2
4 1 1

1a a

a a

u tc F t dt g u K du g t
h h


 

     
  

   
1 1 1 1 1

5 1 1 6 1 2
1 1 1 1

a a a a a

n n
a a a a a

u t u t u tc dt g u K du g t K du c K du dt A A
h h h h h h

                     
          . (8)

Since
1 1 1

a

a

u tK du
h h

    
 

for all  ,1t a a  , we have

2 0 asnA n  . (9)

Further we extend the function  1g u  and assume that outside  ,1a a  it has zero values. Denote this extended

function by  1g u . Then
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   , (10)

where

     1y g y x g x dx




   .

(10) holds by virtue of the Lebesgue theorem on majorized convergence and the fact that    1
1 ,

2
L

uh g
 

  and

  0uh   as n  . Thereby, taking (4)-(10) into account, we have proved that
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   . (11)

Let us now verify the fulfillment of the conditions of the central limit theorem for the sums
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We have
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since 9jna c ,   2
1j jE F t





   for all 1 j n   and 2

nVarT  .

Finally, the statement b) of the theorem follows from (a) if we take into account that
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   . (12)

The theorem is proved.
Lemma 2. 1) In the conditions of the item (a) of Theorem 1,
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n
a

E T c g u du s
 

   
 
 . (13)

2) In the conditions of the item (b) of Theorem 1,
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s
a

s
n

a

E T c g u du s
 

   
 
 . (14)

Proof. Since nT  is the linear form of  j j jF t   , 0jE  , 1 j n  , to prove (13) we will use Whittle’ss

inequality [2].

It is obvious that 1
s

jE   , 1,j n . Therefore by virtue of Whittle’s inequality we have
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By virtue of Lemma 1 this inequality implies
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Taking into account that

   
      2 12

1 11 , 1
1 1ng u g u O c g u a u a

nhF a F a

                  
,

from (15) we obtain
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Further, we have
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The lemma is proved.
Let us introduce the following random processes:
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Theorem 2. 10. Let the conditions of the item (a) of Theorem 1 be fulfilled. Then for all continuous functionals  f 

on  ,1C a a , 
10
2

a   the distribution of   nf T t  converges to the distribution of   f W t a , where  W t a ,

1a t a   , is a Wiener process.

20. Let the conditions of the item (b) of Theorem 1 be fulfilled. Then for all continuous functionals  f   on

 ,1C a a  the distribution of   nf T t  converges to the distribution of   f W t a .

Proof. We will first show that the finite-dimensional distributions of processes  nT t  converge to the finite-dimen-

sional distributions of a process  W t a , t a .We begin by considering one moment of time 1t . We must show that

   1 1
d

nT t W t a  . (16)

To prove (16), it suffices to take      
1,a tg x I x  in (2). Then, by virtue of Theorem 1,

       
1

1

1 1,0, 0,
a

d
n a t

a

T t N I x dx N t a
 

    
 
 .

Let us now consider two moments of time 1t , 2t , 1 2t t . We must show that

         1 2 1 2, ,d
n nT t T t W t a W t a   . (17)

To prove (17), it suffices to take
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1 1 21 2 2, ,a t t tg x I x I x    

in (2). Here 1  and 2  are arbitrary finite numbers. Then, by virtue of Theorem 1,

          2 2
1 1 2 2 1 2 1 2 2 10,d

n nT t T t N t a t t          .

On the other hand,

             1 1 2 2 1 2 1 2 2 10W t a W t a W t a W W t a W t a                    

is distributed like       2 2
1 2 1 2 2 10,N t a t t      . Therefore (17) is true.

The case with three or more moments of time is considered analogously. Thus the finite-dimensional distributions of

processes  nT t  converge to the finite-dimensional distributions of a Wiener process  W t a , 1a t a   .

Now let us show that the sequence   nT t  is tight, i.e. that the sequence of respective distributions is tight. For this

it suffices to show that for any  1 2, ,1t t a a  ,

    2
1 2 18 1 2 , 2

ss

n nE T t T t c t t s    .

Indeed, this inequality is obtained from (13) for      
1 2,t tg x I x .

Further, using (12), (14) and the statements of the item b) of Theorem 1, we easily make sure that the finite-dimen-

sional distributions of processes  nT t  converge to the finite-dimensional distributions of the Wiener process  W t a
and also that

    2
1 2 19 1 2 , 2

ss

n nE T t T t c t t s    .

Thus the proof of the theorem follows from Theorem 2 of the monograph [3] (chapter IX, section 2).
Application. By virtue of Theorem 2 and the Corollary of Theorem 1 from [3] (chapter VI, section 5) we can write that

    
   

2

1

2max exp
2 1 22 1 2

n na t a

xP T T t G dx
aa 

 





  

          


(a is a number given in advance, 
10
2

a  ) as n   .

This result makes it possible to construct tests of a level  , 0 1  , for testing the hypothesis 0H  according to
which

   0 0
ˆ: lim , 1nn

H EF x F x a x a


    ,

when the alternative hypothesis is

       
1

1 0 0
ˆ: lim 0

a

nn
a

H F x EF x F x dx



  .

Let   be a critical value,  G   . If as a result of the experiment it turns out that nT 
  , then the hypothesis

0H  must be rejected.
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