On the Estimation of a Distribution Function by an Indirect Sample. II

Elizbar Nadaraya*, Petre Babilua**, Grigol Sokhadze**

* Academy Member, I. Javakhishvili Tbilisi State University
** I. Javakhishvili Tbilisi State University

Abstract

In this paper the limit theorems are proved for continuous functionals related to the estimate of $\hat{F}_{n}(x)$ in the space $C[a, 1-a]$. © 2011 Bull. Georg. Natl. Acad. Sci.

Key words: distribution function estimate, unbiased, consistency, asymptotic normality, estimate of time moments, Wiener process, random process.

Here as a sample we consider a sequence of random indicators $\xi_{1}=I\left(X_{1}<t_{1}\right), \xi_{2}=I\left(X_{2}<t_{2}\right), \ldots, \xi_{n}=I\left(X_{n}<t_{n}\right)$, where $X_{1}, X_{2}, \ldots, X_{n}$ are independent, equally distributed nonnegative random values with a distribution function $F(x), t_{i}=c_{F} \frac{2 i-1}{2 n}, i=\overline{1, n}, c_{F}=\inf \{x \geq 0: \quad F(x)=1\}<\infty$. The problem consists in estimation of the distribution function $F(x)$ by using the sample $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$.

As an estimate for $F(x)$ we consider an expression of the form

$$
\begin{aligned}
& \hat{F}_{n}(x)= \begin{cases}0, & x \leq 0, \\
F_{1 n}(x) \cdot F_{2 n}^{-1}(x), & 0<x<c_{F}, \\
1, & x \geq c_{F},\end{cases} \\
& F_{1 n}(x)=\frac{1}{n h} \sum_{j=1}^{n} K\left(\frac{x-t_{j}}{h}\right) \xi_{j}, \\
& F_{2 n}(x)=\frac{1}{n h} \sum_{j=1}^{n} K\left(\frac{x-t_{j}}{h}\right),
\end{aligned}
$$

where $\{h=h(n)\}$ is a sequence of positive numbers tending to zero, while the kernel $K(x) \geq 0$ is chosen so that it would be a function of finite variation and satisfy the conditions

$$
\begin{equation*}
K(-u)=K(u), \quad \int K(u) d u=1, \quad K(u)=0 \quad \text { for } \quad|u| \geq 1 . \tag{1}
\end{equation*}
$$

Lemma 1 ([1]). If $n h \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\frac{1}{n h} \sum_{j=1}^{n} K^{v_{1}-1}\left(\frac{x-t_{j}}{h}\right) F^{v_{2}-1}\left(t_{j}\right)=\frac{1}{c_{F} h} \int_{0}^{c_{F}} K^{v_{1}-1}\left(\frac{x-u}{h}\right) F^{v_{2}-1}(u) d u+O\left(\frac{1}{n h}\right)
$$

uniformly with respect to $x \in\left[0, c_{F}\right] ; v_{1}, v_{2}$ are natural numbers. In the sequel, it is assumed that the interval $\left[0, c_{F}\right]=[0,1]$.

Theorem 1. Let $g(x) \geq 0, x \in[a, 1-a], 0<a<\frac{1}{2}$, be a measurable and bounded function.
(a) If $F(a)>0$ and $n h^{2} \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\begin{gather*}
\bar{T}_{n}=\sqrt{n} \int_{a}^{1-a} g_{1}(x)\left[\hat{F}_{n}(x)-E \hat{F}_{n}(x)\right] d x \xrightarrow{d} N\left(0, \sigma^{2}\right), \tag{2}\\
g_{1}(x)=g(x) \psi(F(x)), \quad \psi(t)=\frac{1}{\sqrt{t(1-t)}} .
\end{gather*}
$$

(b) If $F(a)>0$, $n h^{2} \rightarrow \infty, n h^{4} \rightarrow 0$ as $n \rightarrow \infty$ and $F(x)$ has bounded derivatives up to second order, then

$$
T_{n}=\sqrt{n} \int_{a}^{1-a} g_{1}(x)\left[\hat{F}_{n}(x)-F(x)\right] d x \xrightarrow{d} N\left(0, \sigma^{2}\right)
$$

as $n \rightarrow \infty$, where $N\left(0, \sigma^{2}\right)$ is a random value having a normal distribution with zero mean and variance

$$
\sigma^{2}=\int_{a}^{1-a} g^{2}(u) d u
$$

Remark 1. We have introduced $a>0$ in (2) to avoid the boundary effect of the estimate $\hat{F}_{n}(x)$, i.e., the estimate $\hat{F}_{n}(x)$ being a kernel type estimate behaves near the boundary of the interval [0,1] worse in the sense of bias order than inside any interval $[a, 1-a] \subset[0,1], \quad 0<a<\frac{1}{2}$.

Proof of Theorem 1. We have

$$
\bar{T}_{n}=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}\left(\xi_{j}-F\left(t_{j}\right)\right) \frac{1}{h} \int_{a}^{1-a} K\left(\frac{u-t_{j}}{h}\right) g_{2 n}(u) d u,
$$

where $g_{2 n}(u)=g_{1}(u) F_{2 n}^{-1}(u)$.
Hence

$$
\begin{equation*}
\sigma_{n}^{2}=\operatorname{Var} \bar{T}_{n}=\frac{1}{n} \sum_{j=1}^{n} \psi^{-2}\left(F\left(t_{j}\right)\right)\left(\frac{1}{h} \int_{a}^{1-a} K\left(\frac{u-t_{j}}{h}\right) g_{2 n}(u) d u\right)^{2} . \tag{3}
\end{equation*}
$$

Since $K(u)$ has $[-1,1]$ as a support and $0<a \leq u \leq 1-a$, we have $F_{2 n}(u)=1+O\left(\frac{1}{n h}\right)$ and $g_{2}(u)=g_{1}(u)+O\left(\frac{1}{n h}\right)$ uniformly with respect to $u \in[a, 1-a][1]$. Therefore from (3) we have

$$
\sigma_{n}^{2}=\frac{1}{n} \sum_{j=1}^{n} \psi^{-2}\left(F\left(t_{j}\right)\right)\left(\frac{1}{h} \int_{a}^{1-a} K\left(\frac{u-t_{j}}{h}\right) g_{1}(u) d u\right)^{2}+O\left(\frac{1}{n h}\right)
$$

By virtue of Lemma 1 it can be easily shown that

$$
\frac{1}{n} \sum_{j=1}^{n} \psi^{-2}\left(F\left(t_{j}\right)\right)\left(\frac{1}{h} \int_{a}^{1-a} K\left(\frac{u-t_{j}}{h}\right) g_{1}(u) d u\right)^{2}=\int_{0}^{1} \psi^{-2}(F(t)) d t\left(\frac{1}{h} \int_{a}^{1-a} K\left(\frac{u-t}{h}\right) g_{1}(u) d u\right)^{2}+O\left(\frac{1}{n h^{2}}\right)
$$

Therefore

$$
\begin{gather*}
\sigma_{n}^{2}=\int_{a}^{1-a} \psi^{-2}(F(t)) d t\left(\frac{1}{h} \int_{a}^{1-a} K\left(\frac{u-t}{h}\right) g_{1}(u) d u\right)^{2}+\varepsilon_{n}^{(1)}+\varepsilon_{n}^{(2)}+O\left(\frac{1}{n h^{2}}\right), \tag{4}\\
\varepsilon_{n}^{(1)}=\int_{0}^{a} \psi^{-2}(F(t)) d t\left(\frac{1}{h} \int_{a}^{1-a} K\left(\frac{u-t}{h}\right) g_{1}(u) d u\right)^{2} \\
\varepsilon_{n}^{(2)}=\int_{1-a}^{1} \psi^{-2}(F(t)) d t\left(\frac{1}{h} \int_{a}^{1-a} K\left(\frac{u-t}{h}\right) g_{1}(u) d u\right)^{2}
\end{gather*}
$$

Since from $F(u)(1-F(u)) \leq \frac{1}{4}$ and from inequalities $g(u) \leq c_{1}, \psi(F(u)) \leq \frac{1}{\sqrt{F(a)(1-F(1-a))}}, a \leq u \leq 1-a$, it follows that $g_{1}(u) \leq c_{2}$, we have

$$
\begin{equation*}
\varepsilon_{n}^{(1)} \leq c_{3} \int_{0}^{a} d t\left(\int_{\frac{a-t}{h}}^{\frac{1-a-t}{h}} K(u) d u\right)^{2} \tag{5}
\end{equation*}
$$

with $a-t \geq 0$ and $1-a-t \geq 0$. The first inequality is obvious, while the second one follows from the inequalities $0 \leq t \leq a$ and $0<a<\frac{1}{2}$.

Thus

$$
\lim _{n \rightarrow \infty} \int_{\frac{a-t}{h}}^{\frac{1-a-t}{h}} K(u) \quad d u= \begin{cases}0, & 0 \leq t<a \\ \frac{1}{2}, & t=a\end{cases}
$$

By the Lebesgue theorem on bounded convergence, from the latter formula and (5) we obtain

$$
\begin{equation*}
\varepsilon_{n}^{(1)} \rightarrow 0 \quad \text { for } \quad n \rightarrow \infty \tag{6}
\end{equation*}
$$

Analogously,

$$
\begin{equation*}
\varepsilon_{n}^{(2)} \rightarrow 0 \quad \text { for } \quad n \rightarrow \infty \tag{7}
\end{equation*}
$$

Now let us establish that

$$
\int_{a}^{1-a} \psi^{-2}(F(t)) d t\left(\frac{1}{h} \int_{a}^{1-a} K\left(\frac{u-t}{h}\right) g_{1}(u) d u\right)^{2} \rightarrow \sigma^{2}=\int_{a}^{1-a} g^{2}(u) d u
$$

as $n \rightarrow \infty$.

We have

$$
\begin{gather*}
\left|\int_{a}^{1-a} \psi^{-2}(F(t)) d t\left(\frac{1}{h} \int_{a}^{1-a} g_{1}(u) K\left(\frac{u-t}{h}\right) d u\right)^{2}-\int_{a}^{1-a} \psi^{-2}(F(t)) g_{1}^{2}(t) d t\right| \leq \\
\leq c_{4} \int_{a}^{1-a} \psi^{-2}(F(t)) d t\left|\frac{1}{h} \int_{a}^{1-a} g_{1}(u) K\left(\frac{u-t}{h}\right) d u-g_{1}(t)\right| \leq \\
\leq c_{5} \int_{a}^{1-a} d t\left|\frac{1}{h} \int_{a}^{1-a} g_{1}(u) K\left(\frac{u-t}{h}\right) d u-g_{1}(t) \int_{a}^{1-a} \frac{1}{h} K\left(\frac{u-t}{h}\right) d u\right|+c_{6} \int_{a}^{1-a}\left|\int_{a}^{1-a} \frac{1}{h} K\left(\frac{u-t}{h}\right) d u-1\right| d t=A_{1 n}+A_{2 n} . \tag{8}
\end{gather*}
$$

Since

$$
\int_{a}^{1-a} \frac{1}{h} K\left(\frac{u-t}{h}\right) d u \rightarrow 1
$$

for all $t \in(a, 1-a)$, we have

$$
\begin{equation*}
A_{2 n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{9}
\end{equation*}
$$

Further we extend the function $g_{1}(u)$ and assume that outside $[a, 1-a]$ it has zero values. Denote this extended function by $\bar{g}_{1}(u)$. Then

$$
\begin{gather*}
A_{1 n} \leq c_{7} \int_{0}^{1}\left(\int_{-\infty}^{\infty}\left|\bar{g}_{1}(x+y)-\bar{g}_{1}(y)\right| d y\right) \frac{1}{h} K\left(\frac{x}{h}\right) d x \leq \\
\leq c_{8} \int_{-1}^{1}\left(\int_{-\infty}^{\infty}\left|\bar{g}_{1}(y+u h)-\bar{g}_{1}(y)\right| d y\right) K(u) d u=c_{8} \int_{-1}^{1} \omega(u h) K(u) d u \rightarrow 0 \quad \text { for } \quad n \rightarrow \infty, \tag{10}
\end{gather*}
$$

where

$$
\omega(y)=\int_{-\infty}^{\infty}\left|\bar{g}_{1}(y+x)-\bar{g}(x)\right| d x
$$

(10) holds by virtue of the Lebesgue theorem on majorized convergence and the fact that $\omega(u h) \leq 2\left\|\bar{g}_{1}\right\|_{L_{1}(-\infty, \infty)}$ and $\omega(u h) \rightarrow 0$ as $n \rightarrow \infty$. Thereby, taking (4)-(10) into account, we have proved that

$$
\begin{equation*}
\sigma_{n}^{2} \rightarrow \sigma^{2}=\int_{a}^{1-a} g^{2}(u) d u \tag{11}
\end{equation*}
$$

Let us now verify the fulfillment of the conditions of the central limit theorem for the sums

$$
\begin{aligned}
\bar{T}_{n} & =\frac{1}{\sqrt{n}} \sum_{j=1}^{n} a_{j n}\left(\xi_{j}-F\left(t_{j}\right)\right), \\
a_{j n} & =\int_{a}^{1-a} \frac{1}{h} K\left(\frac{x-t_{j}}{h}\right) g_{2}(x) d x
\end{aligned}
$$

We have

$$
L_{n}=\frac{n^{-\left(1+\frac{\delta}{2}\right)} \sum_{j=1}^{n} a_{j n}^{2+\delta} E\left|\xi_{j}-F\left(t_{j}\right)\right|^{2+\delta}}{\left(\sqrt{\operatorname{Var} \bar{T}_{n}}\right)^{2+\delta}}=O\left(n^{-\frac{\delta}{2}}\right)
$$

since $a_{j n} \leq c_{9}, E\left|\xi_{j}-F\left(t_{j}\right)\right|^{2+\delta} \leq 1$ for all $1 \leq j \leq n$ and $\operatorname{Var} \bar{T}_{n} \rightarrow \sigma^{2}$.
Finally, the statement b) of the theorem follows from (a) if we take into account that

$$
\begin{equation*}
\sqrt{n} \int_{a}^{1-a} g_{1}(x)\left[E \hat{F}_{n}(x)-F(x)\right] d x=\sqrt{n} \int_{a}^{1-a} g_{2 n}(x)\left[\int_{-1}^{1} K(u)(F(x-u h)-F(x)) d u\right] d x=O\left(\sqrt{n} h^{2}\right)+O\left(\frac{1}{\sqrt{n} h}\right) \tag{12}
\end{equation*}
$$

The theorem is proved.
Lemma 2. 1) In the conditions of the item (a) of Theorem 1,

$$
\begin{equation*}
E\left|\bar{T}_{n}\right|^{s} \leq c_{10}\left(\int_{a}^{1-a} g(u) d u\right)^{\frac{s}{2}}, \quad s>2 \tag{13}
\end{equation*}
$$

2) In the conditions of the item (b) of Theorem 1 ,

$$
\begin{equation*}
E\left|T_{n}\right|^{s} \leq c_{11}\left(\int_{a}^{1-a} g(u) d u\right)^{\frac{s}{2}}, \quad s>2 \tag{14}
\end{equation*}
$$

Proof. Since \bar{T}_{n} is the linear form of $\eta_{j}=\xi_{j}-F\left(t_{j}\right), E \eta_{j}=0,1 \leq j \leq n$, to prove (13) we will use Whittle's inequality [2].

It is obvious that $E\left|\eta_{j}\right|^{s} \leq 1, j=\overline{1, n}$. Therefore by virtue of Whittle's inequality we have

$$
E\left|\bar{T}_{n}\right|^{s} \leq c(s) 2^{s}\left[\frac{1}{n h^{2}} \sum_{j=1}^{n}\left(\int_{a}^{1-a} K\left(\frac{u-t_{j}}{h}\right) g_{2 n}(u) d u\right)^{2}\right]^{\frac{s}{2}}
$$

where

$$
g_{2 n}(u)=g_{1}(u) F_{2 n}^{-1}(u), \quad c(s)=\frac{2^{\frac{s}{2}}}{\sqrt{\pi}} \Gamma\left(\frac{s+1}{2}\right) .
$$

By virtue of Lemma 1 this inequality implies

$$
\begin{equation*}
E\left|\bar{T}_{n}\right|^{s} \leq c(s) 2^{s}\left[\int_{0}^{1}\left(\frac{1}{h} \int_{a}^{1-a} K\left(\frac{u-t}{h}\right) g_{2 n}(u) d u\right)^{2} d t+O\left(\frac{1}{n h^{2}}\right)\left(\int_{a}^{1-a} g_{2 n}(u) d u\right)^{2}\right]^{\frac{s}{2}} \tag{15}
\end{equation*}
$$

Taking into account that

$$
g_{2 n}(u) \leq g(u)\left[\frac{1}{F(a)(1-F(1-a))}\right]\left[1+O\left(\frac{1}{n h}\right)\right] \leq c_{12} g(u), \quad a \leq u \leq 1-a
$$

from (15) we obtain

$$
\begin{gathered}
E\left|\bar{T}_{n}\right|^{s} \leq c_{13}\left[\sup _{0 \leq t \leq 1}\left(\frac{1}{h} \int_{a}^{1-a} K\left(\frac{u-t}{h}\right) g_{2 n}(u) d u\right)_{0}^{1} d t \int_{a}^{1-a} \frac{1}{h} K\left(\frac{u-t}{h}\right) g_{2 n}(u) d u\right]^{\frac{s}{2}}+O\left(\frac{1}{n h^{2}}\right)^{\frac{s}{2}}\left(\int_{a}^{1-a} g_{2 n}(u) d u\right)^{\frac{s}{2}} \leq \\
\leq c_{14}\left(\int_{a}^{1-a} g(u) d u\right)^{\frac{s}{2}}[1+o(1)] \leq c_{15}\left(\int_{a}^{1-a} g(u) d u\right)^{\frac{s}{2}}, \quad s>2 .
\end{gathered}
$$

Further, we have

$$
\begin{aligned}
E\left|T_{n}\right|^{s} & \leq 2^{s-1}\left(E\left|\bar{T}_{n}\right|^{s}+\left|\sqrt{n} \int_{a}^{1-a} g_{1}(u)\left[E \hat{F}_{n}(u)-F(u)\right] d u\right|^{s}\right) \leq \\
& \leq c_{16}\left(\int_{a}^{1-a} g(u) d u\right)^{\frac{s}{2}}+\left|O\left(\sqrt{n} h^{2}\right) \int_{a}^{1-a} g(u) d u\right|^{s} \leq \\
& \leq c_{17}\left(\int_{a}^{1-a} g(u) d u\right)^{\frac{s}{2}} .
\end{aligned}
$$

The lemma is proved.
Let us introduce the following random processes:

$$
\begin{aligned}
& \bar{T}_{n}(t)=\sqrt{n} \int_{a}^{t}\left(\hat{F}_{n}(u)-E \hat{F}_{n}(u)\right) \psi(F(u)) d u, \\
& T_{n}(t)=\sqrt{n} \int_{a}^{t}\left(\hat{F}_{n}(u)-F(u)\right) \psi(F(u)) d u .
\end{aligned}
$$

Theorem 2. 1^{0}. Let the conditions of the item (a) of Theorem 1 be fulfilled. Then for all continuous functionals $f(\cdot)$ on $C[a, 1-a], 0<a<\frac{1}{2}$ the distribution of $f\left(\bar{T}_{n}(t)\right)$ converges to the distribution of $f(W(t-a))$, where $W(t-a)$, $a \leq t \leq 1-a$, is a Wiener process.
2^{0}. Let the conditions of the item (b) of Theorem 1 be fulfilled. Then for all continuous functionals $f(\cdot)$ on $C[a, 1-a]$ the distribution of $f\left(T_{n}(t)\right)$ converges to the distribution of $f(W(t-a))$.

Proof. We will first show that the finite-dimensional distributions of processes $\bar{T}_{n}(t)$ converge to the finite-dimensional distributions of a process $W(t-a), t \geq a$.We begin by considering one moment of time t_{1}. We must show that

$$
\begin{equation*}
\bar{T}_{n}\left(t_{1}\right) \xrightarrow{d} W\left(t_{1}-a\right) . \tag{16}
\end{equation*}
$$

To prove (16), it suffices to take $g(x)=I_{\left[a, t_{1}\right)}(x)$ in (2). Then, by virtue of Theorem 1,

$$
\bar{T}_{n}\left(t_{1}\right) \xrightarrow{d} N\left(0, \int_{a}^{1-a} I_{\left[a, t_{1}\right)}(x) d x\right)=N\left(0, t_{1}-a\right)
$$

Let us now consider two moments of time $t_{1}, t_{2}, t_{1}<t_{2}$. We must show that

$$
\begin{equation*}
\left(\bar{T}_{n}\left(t_{1}\right), \bar{T}_{n}\left(t_{2}\right)\right) \xrightarrow{d}\left(W\left(t_{1}-a\right), W\left(t_{2}-a\right)\right) . \tag{17}
\end{equation*}
$$

To prove (17), it suffices to take

$$
g(x)=\left(\lambda_{1}+\lambda_{2}\right) I_{\left[a, t_{1}\right)}(x)+\lambda_{2} I_{\left[t_{1}, t_{2}\right)}(x)
$$

in (2). Here λ_{1} and λ_{2} are arbitrary finite numbers. Then, by virtue of Theorem 1,

$$
\lambda_{1} \bar{T}_{n}\left(t_{1}\right)+\lambda_{2} \bar{T}_{n}\left(t_{2}\right) \xrightarrow{d} N\left(0,\left(\lambda_{1}+\lambda_{2}\right)^{2}\left(t_{1}-a\right)+\lambda_{2}^{2}\left(t_{2}-t_{1}\right)\right) .
$$

On the other hand,

$$
\lambda_{1} W\left(t_{1}-a\right)+\lambda_{2} W\left(t_{2}-a\right)=\left(\lambda_{1}+\lambda_{2}\right)\left[W\left(t_{1}-a\right)-W(0)\right]+\lambda_{2}\left[W\left(t_{2}-a\right)-W\left(t_{1}-a\right)\right]
$$

is distributed like $N\left(0,\left(\lambda_{1}+\lambda_{2}\right)^{2}\left(t_{1}-a\right)+\lambda_{2}^{2}\left(t_{2}-t_{1}\right)\right)$. Therefore (17) is true.
The case with three or more moments of time is considered analogously. Thus the finite-dimensional distributions of processes $\bar{T}_{n}(t)$ converge to the finite-dimensional distributions of a Wiener process $W(t-a), a \leq t \leq 1-a$.

Now let us show that the sequence $\left\{\bar{T}_{n}(t)\right\}$ is tight, i.e. that the sequence of respective distributions is tight. For this it suffices to show that for any $t_{1}, t_{2} \in[a, 1-a]$,

$$
E\left|\bar{T}_{n}\left(t_{1}\right)-\bar{T}_{n}\left(t_{2}\right)\right|^{s} \leq c_{18}\left|t_{1}-t_{2}\right|^{\frac{s}{2}}, \quad s>2 .
$$

Indeed, this inequality is obtained from (13) for $g(x)=I_{\left[t, t_{2}\right]}(x)$.
Further, using (12), (14) and the statements of the item b) of Theorem 1 , we easily make sure that the finite-dimensional distributions of processes $T_{n}(t)$ converge to the finite-dimensional distributions of the Wiener process $W(t-a)$ and also that

$$
E\left|T_{n}\left(t_{1}\right)-T_{n}\left(t_{2}\right)\right|^{s} \leq c_{19}\left|t_{1}-t_{2}\right|^{\frac{s}{2}}, \quad s>2 .
$$

Thus the proof of the theorem follows from Theorem 2 of the monograph [3] (chapter IX, section 2).
Application. By virtue of Theorem 2 and the Corollary of Theorem 1 from [3] (chapter VI, section 5) we can write that

$$
P\left\{T_{n}^{+}=\max _{a \leq \leq \leq 1-a} T_{n}(t)>\lambda\right\} \rightarrow G(\lambda)=\frac{2}{\sqrt{2 \pi(1-2 a)}} \int_{\lambda}^{\infty} \exp \left\{-\frac{x^{2}}{2(1-2 a)}\right\} d x
$$

(a is a number given in advance, $0<a<\frac{1}{2}$) as $n \rightarrow \infty$.
This result makes it possible to construct tests of a level $\alpha, 0<\alpha<1$, for testing the hypothesis H_{0} according to which

$$
H_{0}: \lim _{n \rightarrow \infty} E \hat{F}_{n}(x)=F_{0}(x), \quad a \leq x \leq 1-a
$$

when the alternative hypothesis is

$$
H_{1}: \int_{a}^{1-a} \psi\left(F_{0}(x)\right)\left(\lim _{n \rightarrow \infty} E \hat{F}_{n}(x)-F_{0}(x)\right) d x>0
$$

Let λ_{α} be a critical value, $G\left(\lambda_{\alpha}\right)=\alpha$. If as a result of the experiment it turns out that $T_{n}^{+} \geq \lambda_{\alpha}$, then the hypothesis H_{0} must be rejected.

REFERENCES

1. E. Nadaraya, P. Babilua, G. Sokhadze (2010), Bull. Georgian National Acad. Sci., 4, 3:
2. P. Whittle (1960), Teor. Veroyatnost. i Primenen. 5: 331-335 (in Russian).
3. I. I. Gihkman, A. V. Skorokhod (1965), Vvedenie v teoriyu sluchainykh protsessov. M. (in Russian).
