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ABSTRACT. In the present paper the Chandrasekharaiah-Tzou dynamical nonclassical model for
thermoelastic prismatic shell is studied. The initial-boundary value problem corresponding to the
dynamical three-dimensional model is investigated applying variational approach in suitable spaces of
vector-valued distributions. A hierarchy of two-dimensional models is constructed for thermoelastic
prismatic shell, when surface forces and the normal component of heat flux are given along the upper
and the lower faces of the prismatic shell. The two-dimensional initial-boundary value problems
corresponding to the models of the hierarchy are investigated in suitable function spaces. Moreover, the
convergence of the sequence of approximate solutions of three space variables, constructed by means of
the solutions of the reduced two-dimensional problems, to the exact solution of the original three-
dimensional problem is proved and under suitable regularity conditions the rate of convergence is
estimated. © 2013 Bull. Georg. Natl. Acad. Sci.
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The classical theory of thermoelasticity is based on Fourier’s law of heat conduction, which predicts the
infinite propagation speed of thermal signals. To eliminate this unrealistic feature of the classical theory of
thermoelasticity various generalizations were proposed. One of the first nonclassical models with one relaxa-
tion time parameter for thermoelastic bodies was constructed by H. Lord and Y. Shulman [1], where the
classical Fourier’s law of heat conduction was replaced by its modification originally proposed by Maxwell in
the context of theory of gases, and later by Cattaneo in the context of heat conduction in rigid bodies. Later
on, D. Tzou [2] proposed a dual-phase-lag heat conduction model, where one phase-lag corresponding to
temperature gradient is caused by microstructural interactions such as phonon scattering or phonon-elec-
tron interactions, while the second phase-lag is interpreted as the relaxation time due to fast-transient effects
ofthermal inertia. Further, Chandrasekharaiah [3] constructed nonclassical model for thermoelastic bodies,

where the classical Fourier’s law of heat conduction was replaced with its generalization proposed by Tzou.
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In this model the equation describing the temperature field involves the third order derivative with respect to
the time variable of the temperature and divergence of the third order derivative with respect to the time
variable of the displacement. Note that the Chandrasekharaiah-Tzou model is an extension of the Lord-
Shulman [1] nonclassical model for thermoelastic bodies, which depends on one phase-lag. Particular one-
dimensional initial-boundary value problems have been solved within the framework of the Chandrasekharaiah-
Tzou theory in [4] and spatial behavior of solutions of the dual-phase-lag heat conduction equation and
problems of stability of dual-phase-lag heat conduction models have been investigated in [5,6].

In this paper we construct and investigate a hierarchy of two-dimensional mathematical models for pris-
matic shells with variable thickness, when the stress-strain state of thermoelastic body is described by the
Chandrasekharaiah-Tzou nonclassical three-dimensional model with two phase-lags. We employ generaliza-
tion and extension of dimensional reduction method proposed by I. Vekua in the paper [7]. To construct two-
dimensional models of plate I. Vekua considered differential formulation of the three-dimensional initial-
boundary value problem and approximating components of the displacement vector-function by partial sums
of orthogonal Fourier-Legendre series with respect to the variable of plate thickness a hierarchy of initial-
boundary value problems defined on two-dimensional space domain was obtained. The relationship between
the two-dimensional hierarchical models for plates and three-dimensional one in static case first was investi-
gated in the spaces of classical regular functions in the paper [8], and the reduced two-dimensional models
for thin shallow shells were investigated in Sobolev spaces in [9]. Later on, various hierarchical models were
constructed and investigated applying Vekua’s reduction method and its generalizations (see [10-14] and
references given therein).

We consider three-dimensional initial-boundary value problem corresponding to the Chandrasekharaiah-
Tzou dynamical model and applying variational approach and suitable a priori estimates we prove existence
and uniqueness of solution in corresponding spaces of vector-valued distributions with values in Sobolev
spaces. We construct hierarchical two-dimensional models for prismatic shell with variable thickness which
may vanish on a part of the lateral boundary, when the densities of surface force and the normal component
of heat flux are given along the upper and the lower faces of the prismatic shell. We investigate the initial-
boundary value problems corresponding to the constructed dynamical two-dimensional models in suitable
function spaces. Moreover, we prove that the sequence of vector-functions of three space variables restored
from the solutions of the constructed two-dimensional problems converges to the exact solution of the
original three-dimensional problem and under suitable regularity conditions of the solution we estimate the

rate of convergence.

Let W™2(D) = H"(D), r>1, r€R, be the Sobolev space of order  based on the space L’ (D) of
square-integrable functions in D = R”, p e N, in Lebesgue sense, H (D) =[H"(D)]°, L>(D)=[I*(D)T’
and L'(I) =[L* ()P, s>1, s e R, where [ isa Lipschitz surface. For any Banach space X, C°([0,T]; X)
denotes the space of continuous functions on [0,7] with values in X, I*(0,T;X) is the space of such
functions g:(0,7) — X that ||g(t)|| y € L’(0,T) . We denote by g’ =dg/dt the generalized derivative of
gel’(0,T; X).

Let us consider a thermoelastic prismatic shell with thickness which may vanish on a part of its boundary,
i.e. prismatic shell with initial configuration Q) which is the following three-dimensional Lipschitz domain

Q={(x,x,,x;) € R’; h™(x,,x,) <x, <h'(x,x,), (x,X,)€0},
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where @wc R? is a two-dimensional bounded Lipschitz domain with boundary g,

e’ (@)n Cfol (@) are Lipschitz continuous in the interior of the domain @ and on 7 < dw together

with their derivatives up to the third order, 4*(x,,x,) > A~ (x,,x,), for (x;,x,) e @ Uy, ¥ < 0w is a Lipschitz
curve, i (x,,x,)=h"(x,x,), for (x,,x,) €0w\y. The upper and the lower faces of Q, defined by the

equations x, =h"(x,,x,) and x;=h (x,x,), (x,x,)ew, we denote by I'*and I,

respectively, and the lateral face, where the thickness of Q is positive, we denote by

[=00\([" ul)={(x,x,,x) e R A (x,x,) <x, <h'(x,x,), (x,x,)€7}. We assume that the pris-
matic shell consists of homogeneous, isotropic thermoelastic material. The applied body force density we
denote by f =(f;): Qx(0,7) — R’ and the density of heat sources we denote by fg Q2% (0,7) > R . The
prismatic shell is clamped and the temperature @ vanishes along a part

[y = {(x, %, %) € R¥ 1 (x,x,) < x3 < h¥ (x,x,), (x,,X,) €7,} ofthelateral face I', 7, 7 isa Lipschitz
curve, and on the remaining part I’ =1"\1~"_0 of the boundary the surface forces with density

g =(g;):T,x(0,7) - R* and the normal component of the heat flux with density g? : ', x (0,7) — R are
given.

The nonclassical dynamical linear three-dimensional model of stress-strain state of thermoelastic body
obtained by D. Chandrasekharaiah and D. Tzou in differential form is given by

ou;,
Par ;

00 0’0 1, 00 3 0 ( 69} 0 au T 82
—+ Tyt — |=Kk Y —| O+, — |+ O — u+r,—+—2> +
l[ a ok 2ar 2|0 a ) ! at;e"" “or 208

' e

X

0 .
6—[&2% (WS, +2ue, () +f795,;,}+ £ in Qx(O,7), i=1,23, M)

+f9+TO at 2 atZ in QX(OaT)a (2)
B 3 3
u=0 on I';x(0,7), Z(/lZepp ()5, +2ue, (w)+n65; |v, =g on I' x(0,T) 3
J=I p=l
~ 0 00 o
0=0 on [yx(0,7), k) —|0+7,— |v,=¢g" on I',x(0.T), @)
j=1 6xj ot ’

2

u(x,0) =u,(x), Z—?(x,0)=ul(x), 0(x,0)=0,(x) , (x 0)=6,(x), (x 0)=06,(x) inQ, (5

where 0, is the Kronecker’s delta, e, (w)=1/2(du, /0x, +0u,;/0x,) , i,j=1,2,3, u=(1;): Qx(0,T) - R}
is the displacement vector-function of thermoelastic body, 8 :Qx(0,7) — R is the temperature distribu-
tion, A,y are Lamé constants, o isthe mass density, x > 0 is the thermal conductivity coefficient, y >0

is the specific heat at zero strain, 77 is the stress-temperature coefficient, ®; >0 is a constant reference
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temperature, and 7,7, are two different phase-lags. Note, that in the case of 7, =7, =0 the nonclassical
three-dimensional model (1)-(5) coincides with the classical linear three-dimensional model for thermoelastic
bodies.

We investigate the existence and uniqueness of weak solution of the three-dimensional initial-boundary
value problem (1)-(5) and therefore we employ the following variational formulation of the differential prob-

lem: Find w,u’u"e C°([0,T];V(Q)), u” e >(0,T;V(Q)), u® e *(0,T;1*(Q)), 6,0"eC*([0,T];
Ve(Q)), 0" e *(0,T;V° (Q) L (0,T; I*(Q)), 6" [*(0,T; L’ (Q)) , which satisfies the following equa-

tions in the sense of distributions on (0,7,

P'(), V) g, +a(U(),V) +n{9,2e,,p (v)} = (V) + (@ V), WVEVQ), (6
()

p=1

;{9'(.) +7,0"() +%°9”(.),¢J +a"(0()+7,0'(),0) -

()
2 ’ " Tg m 0 7 0 (7)
0| 2, | urTu s u" b | = ()0, ~ (&) VRV (),
pel 2@
together with the initial conditions
u0)=u,, w'(0)=u, 60)=6,, 6'0)=06,, 0"(0)=0,, ®)

where u,,u, are the initial displacement and velocity vector-functions, 6,, 6,, 6, are the initial
distributions of the temperature, its rate of change and the acceleration of change of the temperature,
A s
T + >
o 2 o

V(Q)={ve H'(Q);tr(v)=0 on T')}, V'(Q)={p e H (Q);tr(p)=0 on

I}, tr:H'(Q)— H'>() and #r: H'(Q) — H"*(T) are the trace operators,

a(v,v) = J' lZepp(v)Zeqq(v)+2uz e; (Ve (v)}fx, Vv,V e V(Q),
Q

i,j=1

Q)
‘Sz

G0 =x[ j a—¢d Yo.p el (@),
)iy s ey, ()i, and (52, are scalar products in the spaces L*(Q), [2(Q), L*(T',) and

L*(T,) , respectively.
For the Chandrasekharaiah-Tzou nonclassical dynamical three-dimensional model for thermoelastic pris-
matic shell (6)-(8) the following existence and uniqueness theorem is valid.

Theorem 1. Let uye H* (QV(Q), u,e H*( Q)W (Q), 0, € H*( Q) V9 (Q), 6, H*(Q) NV (Q),
0,e7’(@). feC’(0.TH* Q). f'eC’(0,TLH Q). f".1"e F(O.T;17(Q). gg.g.g"g"

I’ (0,T; L3 T ), 17, fgl e I}(0,T; I} (), gg, ggl, gene *(0,T; 3 (T',)), and the following compat-

ibility conditions are valid:
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j:] 17:]

3 3
g,(0) =Z(126pp(uo)5ij +2ueij(u0)+17905ij}vj , =123,
T

1

3 3
g}(O)zZ{lZepp(u])@j+2,Lteij(u])+n{9]5ij}vj , i=12.3,
A r O)

3 3
gl”(o) = Z{A‘ze‘pp (u2)5ij + 2#61] (u2) +T79251]JVJ s i= 132339
r

=L p=l
1

3
00 06,
0 _ 0 1
g ((»——Zr{ax + ava,- :

Jj=1 J

T

3 3
1 d
where = Z—{zyeij(uo)mzepp(uo)ay+n9051.]}+f1.(0) , i=123.1f p>0, u>0,

Jj=1 6xj p=1

3A+2u>0,x>0, k>0,and 7,>0, 7, >0, then the initial-boundary value problem (6)-(8) possesses
a unique solution.

To construct an algorithm of approximation of the Chandrasekharaiah-Tzou nonclassical three-dimen-
sional model for thermoelastic prismatic shells by a sequence of two-dimensional models let us consider the
subspaces Vi(Q), VI(Q), HL(Q), Vi(Q), HY(Q), V() and H(Q) of H'(Q)NV(Q),
H'(Q)nV(Q), H(Q), H*(Q)nV(Q), H'(Q), V(Q) and L*(Q), respectively, N =(N,,N,,N,) , con-
sisting of vector-functions whose components are polynomials with respect to the variable x, of thickness
ofthe prismatic shell,

N.
L] 1.7 g

Vy =)y vy = —(r,.+5)vNiPr,_(z), i e (@), 0<r <N, i=12,3,
0

r=

where z=x3_h, hzh —h , h=
h 2

h +h .. .
S In addition, we consider the subspaces VA?; (Q), VAZ’Z Q),

V,\Z (©2) and Hf,e Q) of H*(Q)NV(Q), H*(Q) NV’ (Q), V'’ (Q) and I*(Q) , respectively, which consist
of the following functions

Ngl

N 4
®w, =Zz(r+5)€9ivg £.(2), oy, € L(w), 0<r<N,.

r=0

Since the functions 4" and /™ are Lipschitz continuous together with their derivatives up to the third

order in the interior of the domain o, from Rademacher’s theorem [15] it follows that 4*, o_h", 2,0, h*,
9,0,0,,h" are differentiable almost everywhere in " and 0,0, 9, 9, h* e L”(@") forall subdomains ",

; cw, a,o,a,,0a, =1,2. Therefore, the positiveness of /1 in @ implies that for any vector-function
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vy =)L, € Va(Q) the corresponding functions v € H* (@) forall @, o cw,ie. \r’zNi eH, (o)
0<r, <N, =123 Similarly,if v = (¥y,)L, € VI(Q), V5 =(Py)i, € Va(Q), V5 = (V)i € VN (Q),

%

then vN,eH(co) vN,eH (@), leeH(co) foralla),cg cw,ie vneH

loc

(@), ¥~ € Hp (@),

<|-:

lac

(@), 0< 7, <N,, i =1,2,3. For functions from the spaces Vy*(Q) , Vy*(Q) and ¥y (Q) wealso

have ¢, € H, (o), if Py, € V“(Q) groNge H} (o), if ¢y eVA‘Z’Z(Q), and ¢, €H, (),

It (@) » "'"m(n) s ||'||H2(Q)a "'"H‘(Q) and "'"m(g)a "'"/ﬁ(g),

0
Py, € VNH

M. in the spaces H*(Q), H'(Q), H>(Q), H'(Q) and H*(Q), H*(Q), H'(Q) define weighted

of vector-functions vy e[H:}L,(a))]N"“,

and ||

L ||'

norms e > ||

*[[ sk 0 M| EE e 2 MIES

0%

‘:N €[ zoa(w)]Nm > ‘:N S zoa(w)]Nm > ‘:N S zm(w)]Nm > Vi3 = N+ N, +N; +3, with components "’Ni >
‘7N = (")Ni) s and @NH [ lUL (w)]NHH s (BNH [ loc (a))]NﬂJrl B (BNH [ loc (a))]NﬂJrl B Wlth Components @N B

r — — — —
By, = (@y,) - such that [|7x o=l Vg Iy 1198 ooV D 198 T3 ¥ Dy o 1198 1=l Vi

and |9y, llows=ll @y, L5y, 10w, o=l @x, ll2q » 1P, lloe=ll @y, [l . Using the properties of the

] 2 ||‘

Legendre polynomials, we can obtain explicit expressions for the norms pers > ||

MEEEE N | EEE A | M | B

i

and ||

,« » particularly,

2
3N

ENEDING +—)

i=l =0

ri+s; )h 3/2 Ni +||h I/ZVNI ||

Lz(w)

I* (0)

2

2 ( ‘|’
o)

where we assume that the sum with the lower limit greater than the upper one equals to zero.

> (s, +—)(a B (1) 0 W v =120, vset (4 D20, hvsg

s; =1; +1

3>

a=1

For components :;Nl. and grgNg of vector-functions vy E[Hzloc(a’)]Nm and (BNH e[H) (0)]""", which

satisfy the conditions “\:N H <o and ||¢N9 ”9 <o we can define the traces on y . Indeed, the corresponding

vector-function v = (vy,)._, and function @y, of three space variables belong to the space V, (Q) c H'(Q)

and V/\fg (Q) c H'(Q), respectively. Consequently, applying the trace operator on the space H'(Q) we

define the traces on y for functions v,’w and ¢ ,

h* h*

m(vN,)_jrr(len P, (2)dx,. tn(goNH)—J-tr(goNHﬂ P()dx, . —0N, i=13.r=0.N, .

Since the vector-functions vy = (vy,) from the subspaces V, (Q2) and H, (Q), and the functions @y,
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from Vf}e (Q) and Hf,e (Q) are uniquely defined by functions \;\, and @y, oftwo space variables, therefore
considering the original three-dimensional problem (6)-(8) on these subspaces, we obtain the following

hierarchy of two-dimensional initial-boundary value problems: Find wy, w, w} € C°([0,T]; VN (),

Wl e 2(0,T; Vi(o), #) e (0,T; Hy(w)), $y,-Sx, €C°U0.TL V) (@), &F, € I(0.T:Vy (@)
L*(0,T; H ,(i,g (), & N, € I*(0,T;H f,ﬂ (w)) , which satisfy the following equations in the sense of distribu-
tions on (0,7),

d P - > - - _
ERN (Wy V) + ay (Wy, V) +bNN9 (gNH W) =Ly (), Yy €Vy (o), (10)

2
0 7 Zr T Zmo o= 0 7 2 =
RNH(%+To%+7§A”];,<DN9)+%(§N9+T1§’N9,¢N9)—
2

—r — 1 Ty —m = . _ —
_®obfwg (W +7oWx +?0WNs§DNH )= L?vg (@y,)s Yoy, € Vz\i, (w), (1)

together with the initial conditions

Wy (0) = iy, W (0) =iy, &y ()= 0r &1 (0)=Cy,n E0(0)=C, (12)

where 7 (o) = {7y = (vn) €[H}, (0)]"3]F ~(vx) =0 on 7.5, =0,N.i =13},

V(@) = B(@) APy (0). T3 (0) = iy = n) € [H @) [y, <o} -

R(@) = By (@) "y (@) H () = iy = () elH H, ()] ... <0} > V3 (@) = Hy (@) " (@)5

S (@) = 5y = ) €L (@) [ .. <00} (@) = {7 = (o) € [P (@)];

3

N, ) ~ .
Pl = 2D N2 v By <08 7 (@) =y, = (@3,) Ll (@)1 |8, . <

i=1 1,=0

0% CX)} >

r,(py,) =0 00 Fyr =0, N, b, VI (@) = Gy, = (@y,) €LH (@] AV (@); [P,
V0@ = 1By, =(py,) <H (@) AT ()],

—1/2
Y, (@) _ZH

0
the bilinear forms R, RN , Ay aN , bNNg, bNNH

poee <5 Hy () =10y, —(cDNg)e[Lz(w)]N“1

w}’

"gDNH

r (w)

are defined by the corresponding forms in the left-hand

sides of the equations (10), (11) and by taking account of the properties of the Legendre polynomials, we
obtain the following expressions

Ry (Fy,Vy) = ZZ(r+2)pJ‘ leVdew R, 7y, By, ) = Z(r+2j;{j !//NHQDNH do,

i=1 =0

aN@N,vN)=f( th(azepp(yN)Zew(vN)uuZez,<yN>ez,<vN>Jd

r=0 i,j=1
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2 0,h - N“;N( 1} e
—| 0 -(r+1)—= - ’ — (0, =(=1)"" 0, h
I L e D N Gy i e A )

s=r+l

' N O R VI
X| 00 @y, —(r+ D= Py, D e EhEy (0,h" = (=1y"0,h") | |de,

S=r+l

o - & IANREES 1.°
by, (Py, s V) = by, O >By,) = "Z(HEJIL_Z(Z(HE)V“U —-(=D )J+
r=0 ) s=r
2 g o hr  Yeve( 1 NI
+;Z 0, vxa=(r+)== vNa—S;l i Bh (8,1 =(=1y"0,h" ) ||@y, do,
r - 1 r r L - L.
where Nmax =maX{M,N2,N3}, ezj(VN)=E(ai(VNj)+a]-(VNi)+ezj(VN)j, L] =12,3,
ro S Vo r Now | 1)(* N s
eﬁ(vN):—T 0, hvni+0 hvwi |- ZZ s+ v (0,1 = (=) 0,k )+
s=r+l
Ky Ninax 7 7 — ke 7 — j — s
+vNi(a_fh+—(—1)f*sa_fh-)j+Z%(Ha(l—(—l)f“)((’ A2 U= 2%}.

The linear forms Ly, LQNH are defined by the right-hand sides of the equations (6), (7) and are given by

i=l r,=0 ®

~ 3 M 1 17 5 . - . 1% =
LN(VN)=ZZ(’§+EJ IZVNf it &ty + A (1) da""J.ZVNi gni 47, ,
N

- AL IR ' N B . 1r
£,Gu) =3 o3 [100 [ 10 etin - ia v Jdo- [, b ar |
r=0 ) 7

» h*
where 7, =7\7,, A, = \/1+(81hi)2 +(0,h°), v= ij(z)dx3, for all functions v e I*(Q), r e NU{0} ,
h

gai > g?\[; and gy, , gfvg are restrictions of

+

3 3
&ni(0) =g (1) + Z{lzepp (Wno)0y; + 2 (Wno) +77§Ngo5ij}‘/j

J=I\ p=l r,

+

3 3
+12{l epp(wN])él-j+2ueij(wN])+n§N6]5iijj

J=L p=l I,
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2
’ ", t .
{lzepp(wm)@,+2ﬂ (wN2)+n§N926Uij - £,(0)- /(O - g/O)—, i=123,
T

1

1{< 0
Wnai =;(26x { #ez,(WNo)"'/lZe p(WN0)5gj+n§N905ijJ+fNi(0)J’ i=123,

j=1

-g"(0),

r

N, a Nyl
gh, ) =2g"(n- Z (gx" +TILJV,~

J=1 J ax.f

on the upper I'" and the lower I'~ faces of the prismatic shell, respectively, Wyno € V&‘ (Q), wy, € Vli (Q),

S0 € V}\Z’} Q), gy, € VAZ’Z Q), gy, € V}\?g (€2) correspond to the initial data wy,, Wy, , ENHO, Q:NHI , ngz

ofthe two-dimensional problem.
For the two-dimensional initial-boundary value problems (10)-(12) of the constructed hierarchy the fol-

lowing theorem is proved.

Theorem 2. If two-dimensional domain » and functions h*, h~ are such that Q c R’ is a Lipschitz
domain, p>0, u>0, 3A+2u>0, ¥ >0, x>0, 7,>0, 7, >0, thefunctions f,iw, g;\n s

(r=0,..,N,,i=123), fN gf,g (r=0,..,N,), gf]j satisfy the following conditions

fa = () € C° (10, TL; H2 (@), () € C° (10, TL; HL (@), h"2(f)"s B2 ()" € (0, T; I (@),
AR, 22 (ge) A (g ) A (g A (gi)™ e P (0,T; 1 (),

B g i (g ) (g ) " (2) " ™ (g3) ™ € (O.T3 L (r)), 1 = O N, = 1.3,

KLY e PO,T R (), A gn, A (gh) A (gy)" € L (0.T: L (@),

W' gy (g ) (g ) e L(O,T; L (7)), 7 =0, N,

and vy, e V;; (@), Wy, € V; (o), Q:NHO € V;\Z’} (), ENHI € V,\Z’z (@), Q:NHZ € V,\Z (w) , then the dynamical two-

dimensional problem (10)-(12) possesses a unique solution.

So, we have constructed a hierarchy of dynamical two-dimensional models for thermoelastic prismatic
shell with variable thickness on the basis of the Chandrasekharaiah-Tzou nonclassical three-dimensional
model for thermoelastic bodies. In the following theorem we formulate the results on the relationship between

the constructed two-dimensional and the original three-dimensional models for thermoelastic prismatic shells,
where we assume that the functions 4" and /4~ defining the upper and the lower faces of the prismatic shell
and their derivatives up to the third order are Lipschtiz continuous on the domain w = R?,i.e. #* € C*' (@),
and we use the following anisotropic weighted Sobolev spaces

HE;O’S(Q) ={v; h*ofve I2(Q),0<k<s}, seN,

HIM Q)= {v; 00y e (), 1<k <5, 7r=0,1,i=1,2,3}, seN,

HX»(Q)={v; 707200 ve X(Q), 1<k <s,r,7F=0,1,i/=123}, seN,s>2,
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H;;%’A(Q) = {V, hk_3a_]‘;_3a”ﬂa’:‘a;v€l‘2(g)s lgkgss r, stzosls i!jsp =13233}5 NS N,S 23,

LRV 4

H:£4,S(Q) ={v; hk-4a_’;—4afafafafve Lz(Q), 1<k<s,rif7r=011ijpg=123, s=4, seN,

LA )

which are Hilbert spaces with respect to the corresponding norms.

Theorem 3. Let p>0, p>0, 34+2u>0,x>0, k>0, 7,>0, 7,>0, u, e H'(Q)NV(Q),
u e Q)NV(Q), 6, e H(Q)NV(Q), 6, e H*( Q)Y (Q), 6, eV’ (Q), feC(0,T]; H (Q)),
f'e CO(0.7H (@), 1".1"<L(0.T;L2(Q), g.8.g". 8" gVl (O0.Ts L (), /0 /7 e 20.1:12(Q),
g’ ggl , ggu e L’(0,T;L'*(T))) and the compatibility conditions (9) are fulfilled. If the vector-functions of
three space variables Wy, € Vi (Q), Wy, € V3(Q), &y, €V (Q), Cy,1 € V@), Sy, €V (Q) cor-
responding to the initial conditions iy, € V]é(a)) , Wy € 17]3 (o), Q:NHO € V;\Z’} (), ENHI € V;\Z’z (),
éj N2 € V/\Z (@) of the two-dimensional problems, tend to w,, u,, 6,, 0, and 0, in the spaces H'(Q),
H’(Q), H(Q), H*(Q) and H'(Q), respectively, and the vector-functions of three space variables
fy € C°([0, T HY (), £ € C([0,T]; H(Q)), £{ € L(0,T;Hy(Q)), £,(0) € H(Q), £{(0) € Hy(Q)
and fl\fg e’(0,T; Hf]g (Q)) corresponding to the vector-functions ]‘N = (f:;l-) IS CO([O,T];FIIEJ (w)),

(L) eC’ (0T H\(w), (L) elOTH @), AOeHi(w), (KO (@) and

f]\fg = (f]\?g Ye I (O,T;I:I,f,g (@) are such that £y, £5, £5 tendto £, £, £" in [*(0,T;L*(Q)), fy(0) tends
to £(0) in H*(Q), £{(0) tends to £'(0) in 12(Q), and [y, convergesto f° inthespace I*(0,T;L*(Q)),
as N, = {njt}{Ni, N,} — o, then the sequences of vector-functions {wy(t)} and functions ¢ N, (D} con-

structed by means of the solutions wy(t) and c v, (1) of the two-dimensional problems of the hierarchy

(10)-(12), tend to the solutions u(t) and 6(t) of the original three-dimensional problem (6)-(8),

w (1) > u(?) in H'(Q), V¢e[0,T],
wi () > u'(r) in H'(Q), Vte€[0,T],
wi(t) —>u'(t) in I'(Q), Vte[0,T], as N . — o,
wi () > u'(r) in I*(0,T;H' (Q)),
wr () —>u"() in I’(0,T; L7 (Q)),
Sy, (> 0() in H'(Q), vt e[0,T],
S, (> 0'(0) in I*(Q), vt e[0,T],
as N_;, — ©.
Sy, ()= 0'(0) in I*(0,7; H'(Q)),
N, ()= 0"(1) in L*(0,T;L* (),

In addition, if d"u/dt"e I*(0,T; (HL;]’S" Q)), r=0,1,2,3, ue*0,T; (H}?;OM (Q)°), s, €N, 5,25,

k=0,1,23, s,eN, s,>4, d’'0/dt eI*(0,T; H;,;"S'g (Q)), 7=0,1,2, "< L*(0,T; H}?;O’Sg (Q)),
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SI? eN, SI? >4, ]E =0,1,2, s39 eN, S_f >3, and u, € (H:;&f(, (Q))3, u € (Hzf,sl (Q))3’ 90 c H;;.Lfn (Q) ,

2,25 11,5 ~ o~ ~0 ~0 ~0 ~ ~ ~0 ~0 ~0
eH " (Q), 0,eH: (), 5,5,5,5,5 eN, §28, §26, § =6, § =5,5 >4,
0,0,3,

't/ di” e 0,T; (H™" (), p=0,1,2, 5,,8,5 €N, §,,3,8, 22, £(0)e (H**(Q)',5, N,

5, > 4, then for appropriate initial conditions Wy, , Wy, , £ Ny0 4 Nyl > c v, and fN the following estimate is

valid
’ ’ " ”n 4 "
"u_WN"C”([o,r];H‘(Q)) +||u ~Wx "c”([o,r];H‘(Q)) +||u “WNlleo oz TIW = WNll2orm @) T
" =wxl. .. +||9— +||9'— .
| NIz 0,7:17 () é,NH (0.7} H" (Q) gNH (0.7 2(Q))
1 =
+or-¢; +or-¢» <——o(T,Q,T,,h*,N,N,
é,NH Lz(O,T;H‘(Q)) gNg ( > P00 ) B 9)3

Fori@ ~ (N,,)’
s . . 0 A 0 ~ ~ ~0 ~0 ~0 —
where s = mln{ggyg{si —1},s4,g£1]1gnz{sj —-15,},55,5,—4,5, 2,5, 3,5, =2,5, —1,5, -2} and

o(T,Q,T,, 1", N,N,)—>0 ,as N, —> .
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