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ABSTRACT. In the present paper the Chandrasekharaiah-Tzou dynamical nonclassical model for
thermoelastic prismatic shell is studied. The initial-boundary value problem corresponding to the
dynamical three-dimensional model is investigated applying variational approach in suitable spaces of
vector-valued distributions. A hierarchy of two-dimensional models is constructed for thermoelastic
prismatic shell, when surface forces and the normal component of heat flux are given along the upper
and the lower faces of the prismatic shell. The two-dimensional initial-boundary value problems
corresponding to the models of the hierarchy are investigated in suitable function spaces. Moreover, the
convergence of the sequence of approximate solutions of three space variables, constructed by means of
the solutions of the reduced two-dimensional problems, to the exact solution of the original three-
dimensional problem is proved and under suitable regularity conditions the rate of convergence is
estimated. © 2013 Bull. Georg. Natl. Acad. Sci.
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The classical theory of thermoelasticity is based on Fourier’s law of heat conduction, which predicts the
infinite propagation speed of thermal signals. To eliminate this unrealistic feature of the classical theory of
thermoelasticity various generalizations were proposed. One of the first nonclassical models with one relaxa-
tion time parameter for thermoelastic bodies was constructed by H. Lord and Y. Shulman [1], where the
classical Fourier’s law of heat conduction was replaced by its modification originally proposed by Maxwell in
the context of theory of gases, and later by Cattaneo in the context of heat conduction in rigid bodies. Later
on, D. Tzou [2] proposed a dual-phase-lag heat conduction model, where one phase-lag corresponding to
temperature gradient is caused by microstructural interactions such as phonon scattering or phonon-elec-
tron interactions, while the second phase-lag is interpreted as the relaxation time due to fast-transient effects
of thermal inertia. Further, Chandrasekharaiah [3] constructed nonclassical model for thermoelastic bodies,
where the classical Fourier’s law of heat conduction was replaced with its generalization proposed by Tzou.
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In this model the equation describing the temperature field involves the third order derivative with respect to
the time variable of the temperature and divergence of the third order derivative with respect to the time
variable of the displacement. Note that the Chandrasekharaiah-Tzou model is an extension of the Lord-
Shulman [1] nonclassical model for thermoelastic bodies, which depends on one phase-lag. Particular one-
dimensional initial-boundary value problems have been solved within the framework of the Chandrasekharaiah-
Tzou theory in [4] and spatial behavior of solutions of the dual-phase-lag heat conduction equation and
problems of stability of dual-phase-lag heat conduction models have been investigated in [5,6].

In this paper we construct and investigate a hierarchy of two-dimensional mathematical models for pris-
matic shells with variable thickness, when the stress-strain state of thermoelastic body is described by the
Chandrasekharaiah-Tzou nonclassical three-dimensional model with two phase-lags. We employ generaliza-
tion and extension of dimensional reduction method proposed by I. Vekua in the paper [7]. To construct two-
dimensional models of plate I. Vekua considered differential formulation of the three-dimensional initial-
boundary value problem and approximating components of the displacement vector-function by partial sums
of orthogonal Fourier-Legendre series with respect to the variable of plate thickness a hierarchy of initial-
boundary value problems defined on two-dimensional space domain was obtained. The relationship between
the two-dimensional hierarchical models for plates and three-dimensional one in static case first was investi-
gated in the spaces of classical regular functions in the paper [8], and the reduced two-dimensional models
for thin shallow shells were investigated in Sobolev spaces in [9]. Later on, various hierarchical models were
constructed and investigated applying Vekua’s reduction method and its generalizations (see [10-14] and
references given therein).

We consider three-dimensional initial-boundary value problem corresponding to the Chandrasekharaiah-
Tzou dynamical model and applying variational approach and suitable a priori estimates we prove existence
and uniqueness of solution in corresponding spaces of vector-valued distributions with values in Sobolev
spaces. We construct hierarchical two-dimensional models for prismatic shell with variable thickness which
may vanish on a part of the lateral boundary, when the densities of surface force and the normal component
of heat flux are given along the upper and the lower faces of the prismatic shell. We investigate the initial-
boundary value problems corresponding to the constructed dynamical two-dimensional models in suitable
function spaces. Moreover, we prove that the sequence of vector-functions of three space variables restored
from the solutions of the constructed two-dimensional problems converges to the exact solution of the
original three-dimensional problem and under suitable regularity conditions of the solution we estimate the
rate of convergence.

Let ),()(2, DHDW rr   1r  , rR , be the Sobolev space of order r based on the space  DL2  of

square-integrable functions in pD  R , pN , in Lebesgue sense, 3( ) [ ( )] ,r rD H DH  2 2 3( ) [ ( )]D L DL

and 3ˆ ˆ( ) [ ( )]s sL  L , 1s  , sR , where ̂  is a Lipschitz surface. For any Banach space  X, 0 ([0, ]; )C T X

denotes the space of continuous functions on [0, ]T  with values in X, 2 (0, ; )L T X  is the space of such

functions : (0, )g T X  that 2( ) (0, )Xg t L T . We denote by /g dg dt   the generalized derivative of
2 (0, ; )g L T X .

Let us consider a thermoelastic prismatic shell with thickness which may vanish on a part of its boundary,
i.e. prismatic shell with initial configuration  which is the following three-dimensional Lipschitz domain

3
1 2 3 1 2 3 1 2 1 2{( , , ) ; ( , ) ( , ), ( , ) },x x x h x x x h x x x x       R
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where 2  R  is a two-dimensional bounded Lipschitz domain with boundary  ,
0 3,1( ) ( )loch C C        are Lipschitz continuous in the interior of the domain   and on     together

with their derivatives up to the third order, 1 2 1 2( , ) ( , ),h x x h x x   for 1 2( , ) ,x x         is a Lipschitz

curve, 1 2 1 2( , ) ( , ),h x x h x x   for 1 2( , ) \x x    . The upper and the lower faces of  , defined by the

equations 3 1 2( , )x h x x  and 3 1 2( , )x h x x ,  1 2( , )x x  ,  we denote by  and  ,
respectively, and the lateral face, where the thickness of   is positive, we denote by

3
1 2 3 1 2 3 1 2\ ( ) {( , , ) ; ( , ) ( , ),x x x h x x x h x x           R  1 2( , ) }x x   . We assume that the pris-

matic shell consists of homogeneous, isotropic thermoelastic material. The applied body force density we

denote by ( ): (0, )if T f 3 R  and the density of heat sources we denote by : (0, )f T   R . The

prismatic shell is clamped and the temperature   vanishes along a part
3

0 1 2 3 1 2 3 1 2{( , , ) ; ( , ) ( , ),x x x h x x x h x x     R  1 2 0( , ) }x x    of the lateral face  , 0    is a Lipschitz

curve, and on the remaining part 1 0\     of the boundary the surface forces with density
3

1( ) : (0, )ig T   g R  and the normal component of the heat flux with density 1: (0, )g T    R  are

given.
The nonclassical dynamical linear three-dimensional model of stress-strain state of thermoelastic body

obtained by D. Chandrasekharaiah and D. Tzou in differential form is given by

2 3 3

2
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  in  ,  (5)

where ij  is the Kronecker’s delta, ( ) 1/ 2( / / )ij i j j ie u x u x     u , , 1, 2,3i j  , ( ):iuu (0, )T 3 R

is the displacement vector-function of thermoelastic body, : (0, )T   R  is the temperature distribu-

tion, ,   are Lamé constants,   is the mass density, , 0   is the thermal conductivity coefficient, 0 

is the specific heat at zero strain,   is the stress-temperature coefficient, 0 0   is a constant reference
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temperature, and 0 1,   are two different phase-lags. Note, that in the case of 0 1 0    the nonclassical

three-dimensional model (1)-(5) coincides with the classical linear three-dimensional model for thermoelastic
bodies.

We investigate the existence and uniqueness of weak solution of the three-dimensional initial-boundary
value problem (1)-(5) and therefore we employ the following variational formulation of the differential prob-

lem: Find 0, , ([0, ]; ( ))C T  u u u V ,  2 (0, ; ( ))L T u V ,  (4) 2 2(0, ; ( ))L T u L ,  0, ([0, ];C T  

( ))V   , 2 2(0, ; ( )) (0, ; ( ))L T V L T L     , 2 2(0, ; ( ))L T L   , which satisfies the following equa-

tions in the sense of distributions on (0, )T ,

2 2 2
1

2

3

( ) ( ) ( )
1 ( )

( (.), ) ( (.), ) , ( ) ( , ) ( , ) ,  ( ),pp
p L

a e  
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(7)

together with the initial conditions

0(0) ,u u   1(0) , u u   0(0)  ,   1(0)   ,   2(0)   , (8)

where 0u , 1u are the initial displacement and velocity vector-functions, 0 1 2, ,    are the initial

distributions of the temperature, its rate of change and the acceleration of change of the temperature,
2 2
0

0 2 ,
2

f ff f
t t

 
  

  
  

 

   1( ) { ( ); ( )    V v H tr v 0  on 0} , 1( ) { ( ); ( ) 0V H tr        on

0} ,  1: ( ) tr H 1/ 2 ( )H  and 1 1/ 2: ( ) ( )tr H H    are the trace operators,
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2 ( )
(.,.)

L , 2 ( )
(.,.)L  , 2

1( )
(.,.)

L  and 2
1( )

(.,.)L   are scalar products in the spaces 2 ( )L , 2 ( )L  , 2
1( )L  and

2
1( )L  , respectively..

For the Chandrasekharaiah-Tzou nonclassical dynamical three-dimensional model for thermoelastic pris-
matic shell (6)-(8) the following existence and uniqueness theorem is valid.

Theorem 1. Let 4
0 ( ) ( )   u H V , 3

1 ( ) ( )   u H V , 3
0 ( ) ( )H V     , 2

1 ( ) ( )H V      ,

2 ( )V   , 0 2([0, ]; ( ))C T f H , 0 1([0, ]; ( ))C T f H , 2 2, (0, ; ( ))L T  f f L , (4), , , ,   g g g g g

2 4/3
1(0, ; ( ))L T L , 2 2, (0, ; ( ))f f L T L    , 2 4 /3

1, , (0, ; ( ))g g g L T L     ,  and the following compat-

ibility conditions are valid:



On Hierarchical Models of Prismatic Shells ... 37

Bull. Georg. Natl. Acad. Sci., vol. 7, no. 2, 2013

1

1

1

3 3

0 0 0
1 1

3 3

1 1 1
1 1

3 3

2 2 2
1 1

(0) ( ) 2 ( ) , 1,2,3,

(0) ( ) 2 ( ) , 1,2,3,

(0) ( ) 2 ( ) , 1,2,3,

i pp ij ij ij j
j p

i pp ij ij ij j
j p

i pp ij ij ij j
j p

g e e i

g e e i

g e e i

g

     

     

     

  

  

  

 
    
 
 

 
     
 
 

 
     
 
 

 

 

 

u u

u u

u u

1

3
0 1

1
1

(0) ,j
j jj x x

 
  

 

  
      


(9)

where 
3 3

2 0 0 0
1 1

1 2 ( ) ( ) (0) ,i ij pp ij ij i
jj p

u e e f
x

    
  

       
     

 u u  1, 2,3i  .  If 0  ,  0  ,

3 2 0   , 0  , 0  , and 0 0  , 1 0  , then the initial-boundary value problem (6)-(8) possesses

a unique solution.
To construct an algorithm of approximation of the Chandrasekharaiah-Tzou nonclassical three-dimen-

sional model for thermoelastic prismatic shells by a sequence of two-dimensional models let us consider the

subspaces 4 ( )NV , 3 ( )NV , 2 ( )NH , 2 ( )NV , 1 ( )NH , ( )NV  and ( )NH  of 4 ( ) ( )  H V ,
3 ( ) ( )  H V , 2 ( )H , 2 ( ) ( )  H V , 1( )H , ( )V  and 2 ( )L , respectively, , 1 2 3( , , )N N NN , con-

sisting of vector-functions whose components are polynomials with respect to the variable 3x  of thickness

of the prismatic shell,

( )ivN Nv ,  
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1 1( ) ( )
2

i i

i
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N r

ii i r
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v r v P z
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  NN ,   2 ( )
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h hh
 

 , 
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h hh
 

 . In addition, we consider the subspaces ,3( )NV


  , ,2 ( )NV


  ,

( )NV


   and ( )NH


   of 3 ( ) ( )H V    , 2 ( ) ( )H V    , ( )V    and 2 ( )L  , respectively, which consist

of the following functions

0

1 1( ) ( )
2

N r

NN r
r

r P z
h




 



  ,  2 ( )
r

N L


  , 0 r N  .

Since the functions h and h are Lipschitz continuous together with their derivatives up to the third

order in the interior of the domain ,  from Rademacher’s theorem [15] it follows that h , h
 , 

1
h 
  ,

1 2
h  
    are differentiable almost everywhere in *  and 

1 2 3

*( )h L           for all subdomains * ,

*  , 1 2 3, , , 1,2     . Therefore, the positiveness of h  in   implies that for any vector-function
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3 4
1( ) ( )i iv   N N Nv V  the corresponding functions 4 *( )

ir

iv H N  for all * , *  , i.e. 4 ( )
ir

i locv H N ,

0 , 1,2,3i ir N i   . Similarly, if 3 3
1( ) ( )i iv   N N Nv V  , 3 2
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1( ) ( )i iv   N N Nv V ,
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where we assume that the sum with the lower limit greater than the upper one equals to zero.
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from ( )NV


   and ( )NH


   are uniquely defined by functions 
i

Ni

r
v  and 

r

N
  of two space variables, therefore

considering the original three-dimensional problem (6)-(8) on these subspaces, we obtain the following

hierarchy of two-dimensional initial-boundary value problems: Find wN
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The linear forms LN , NL


  are defined by the right-hand sides of the equations (6), (7) and are given by
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on the upper  and the lower  faces of the prismatic shell, respectively, , 4
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0 ( )N NV
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1 ( )N NV

 

   , 2 ( )N NV
 

    correspond to the initial data 0wN
 , 1wN

 , 0N



, 1N



, 2N



of the two-dimensional problem.
For the two-dimensional initial-boundary value problems (10)-(12) of the constructed hierarchy the fol-

lowing theorem is proved.

Theorem 2. If two-dimensional domain   and functions h , h  are such that 3  R  is a Lipschitz
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, then the dynamical two-

dimensional problem (10)-(12) possesses a unique solution.
So, we have constructed a hierarchy of dynamical two-dimensional models for thermoelastic prismatic

shell with variable thickness on the basis of the Chandrasekharaiah-Tzou nonclassical three-dimensional
model for thermoelastic bodies. In the following theorem we formulate the results on the relationship between
the constructed two-dimensional and the original three-dimensional models for thermoelastic prismatic shells,

where we assume that the functions h  and h  defining the upper and the lower faces of the prismatic shell

and their derivatives up to the third order are Lipschtiz continuous on the domain 2  R , i.e. 3,1( )h C   ,
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maTematikuri fizika

Candraseqharaia-cous Termodrekadobis
araklasikuri Teoriis farglebSi prizmuli
garsebis ierarqiuli modelebis Sesaxeb

g. avaliSvili*, m. avaliSvili**

*  i.javaxiSvilis sax. Tbilisis saxelmwifo universiteti, zust da sabunebismetyvelo mecnierebaTa
fakulteti, Tbilisi
** saqarTvelos universiteti, informatikis, inJineriisa da maTematikis skola, Tbilisi

(warmodgenilia akademiis wevris r. bancuris mier)

naSromSi Seswavlilia Candraseqharaia-cous dinamikuri araklasikuri modeli
Termodrekadi prizmuli garsebisaTvis. variaciuli midgomis gamoyenebiT samganzomilebiani
dinamikuri modelis Sesabamisi sawyis-sasazRvro amocana gamokvleulia saTanado
veqtoruli mniSvnelobebis mqone ganawilebebis sivrceebSi. Termodrekadi prizmuli garsi-
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saTvis, romlis zeda da qveda zedapirebze mocemulia Zabvebi da siTbos nakadis mdgeneli
normalis gaswvriv, agebulia organzomilebian modelTa ierarqia. ierarqiis modelebis
Sesabamisi organzomilebiani sawyis-sasazRvro amocanebi gamokvleulia saTanado fun-
qcionalur sivrceebSi. amave dros, damtkicebulia reducirebuli organzomilebiani
amocanebis amonaxsnebis saSualebiT agebul sami sivrciTi cvladis miaxloebiTi amonaxsnebis
mimdevrobis krebadoba sawyisi samganzomilebiani amocanis zusti amonaxsnisaken da saTanado
regularobis pirobebSi Sefasebulia krebadobis rigi.
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