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ABSTRACT. The analysis of the definition of Wiener process in a Banach space is given. It considers
the definitions of generalized Wiener process and Wiener process in a weak sense. The representations
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Let X be a real separable Banach space, *X - its conjugate, B (X) - the Borel  -algebra of  X, ( , , )    -

a probability space. The continuous linear operator 2: ( , , )T X L      is called a generalized random

element (GRE). We consider such a GRE, which maps *X  to a fix  closed separable subspace  G  2L ( , , )   .

Denote by 1 : ( , )M L X G  the Banach  space of  the GRE with the norm 
1 2

*
* 1: sup xM L

T Tx . A  random

element (measurable map) : X   is said to have a weak second order, if for all x X  , E
2*, x < .

We can realize the random element   as an element of 1M : T
*x *,x (Continuity of  T follows from the

closed graph  theorem). Denote by 2M the linear space of all random elements of the weak second order with

the norm T  . Thus, we can assume M 2 1M . Let 1T M . Consider the map 1:Tm X R  ,

Tm x ETx  . This is a linear and bounded functional, therefore Tm X  and it is called the mean of GRE

T . Let  ' ,TT x Tx m x    . The covariance operator of  the GRE T is  called  the operator ' 'TR T T .

:TR X X  is a positive and symmetric linear operator. Further, without the loss of generality, we con-

sider  random elements (GRE) with the mean 0. If  2T T M  ,  then TR  maps X  to  X (see [1], theorem

3.2.1). If  R  is a positive and symmetric linear operator from X  to X, then there exist ( )kx k N X 
  and
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( )kx k N X   such, that ,k j kjRx x     , k kRx x  , 
1

,k k
k

Rx x x x


 



   , x X   (see [1] lemma 3.1.1).

In general, as G is a separable, for  :R X X  there exist ( )kx k N X 
   and ( )kx k N X 

  such

that ,k j kjRx x     k kRx x  , 
1

,k k
k

Rx x x x


   



   , x X  .

We consider weakly independent random elements in a  Banach space.

Definition 1.  Random elements  1 2, ,..., n    are called weakly independent  in X ([1: 259; 5]),  if for all

x X  ,  the random variables 1 2, , , ,..., ,nx x x           are independent.

Proposition 1. If  the  weak second order random elements 1 2, ,..., n    are weakly independent , then

the cross-covariance operators of the random elements i  and j , 1,...i j n  are antisymmetric; the  Gaussian

random elements 1 2, ,..., n   are weakly independent if and only if their cross-covariance operators are
antisymmetric.

Proof. As i  and j are weakly independent, for all  *x and  *y from X  , ,iE x y     , 0j x y    ,

but  , , , , , , , , , ,i j i j i j i j i jE x y x y E x x E x y E y x E y y                                      

,, , , 0i j i jx y E y x               . Therefore, , , ,i j iE x y E y           ,j x   .

That is, , , .ij ijR x y R y x         If 1 2, ,..., n    are Gaussian and , ,ij ijR x y R y x        , then the

random variables 1 2, , , ,..., ,nx x x           are non-correlated, therefore, they are independent, that is, the

random elements  1 2, ,..., n    are Gaussian weakly independent. Consequently, if the random elements

1 2, , n   are weakly independent, then the covariance operator of nX valued random element

1 2( , , , )n      maps *( )nX to nX  and is given by

R 

11 12 1

12 22 1

1 2

n

n

n n nn

R R R
R R R

R R R

 
  
 
 
  




   


,

where ij ij jiR R R    . Now we  consider the weakly independent GREs.

Definition 2. The generalized random elements 1 2, ,... nT T T  are called weakly independent, if for all x X  ,

the random variables  1 2, ,... nT x T x T x   are independent.

If  the GREs  1 2, ,... nT T T  are weakly independent, then the cross-covariance operators of the GREs  iT  and

jT  , 1,...i j n  are antisymmetric: :ijR X X  , , ,ij i j ij i jR x y E T x T y R y x ET y T x                .

Gaussian GREs are weakly independent if, and only if, their cross-covariance operators are anti-symmetric.
The following proposition gives the representation  of the GRE by the sum of non-correlated random vari-
ables. If the GRE is Gaussian, then, obviously, the corresponding random variables are independent standard
Gaussian.
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Proposition  2. Let T be a GRE. There exist ( )k k Nx 
  and ( )kx k N X 

  such  that for all x X  ,

1

, k k
k

Tx x x Tx


   



   , ,T k j k j kjR x x ETx Tx        , T k kR x x  ,
1

,T k k
k

R x x x x


   



   . There-

fore, if T is Gaussian, then kTx , 1, 2,...k  are independent standard Gaussian  random variables.

Proof. Consider the covariance operator of the GRE T , :TR X X  , TR T T . Let ( )k k Nx 
  and

( )kx k N X 
   be such that ,T k j k j kjR x x ETx Tx        , T k kR x x   

1

,T k k
k

R x x x x


   



   ,  for

all x X  . If  we  take  up 
1

,
n

n k k
k

T x x x Tx   



   ,  then 2 2 2( ) 2n n nE Tx T x ETx ETx T x T x         

2 2 2 2

1 1 1 1

, 2 , , , 0
n n

k k k k
k k k k n

x x x x x x x x
 

       

    

                . Therefore 
1

, k k
k

Tx x x Tx


   



   .

The family of  the GRE ( tT ) [0,1]t   is called a generalized random process (GRP).

Definition 3. A GRP ( tT ) [0,1]t  is called Gaussian, if for any natural number n , 1 2, ,..., nt t t  from [0,1],

1 2, ,..., nx x x    from X  ,  the random vector ( 1 1 2 2, ,..., n nT x T x T x   ) is Gaussian.

Definition 4. A Gaussian GRP ( tT ) [0,1]t  is called generalized Wiener process in a weak sense, if  for all

x X  ,  tT x  is a Wiener process. The variance , min( , )t sET x T x Rx x t s      , where , , [0,1]t s   and

:R X X   is the covariance operator of  the GRE 1T ; 1 1R T T .

Proposition 3.  Let  ( tT ) [0,1]t  be a generalized Wiener process in a weak sense. There exist

( )k k Nx X 
  , ( )kx k N X 

  and a sequence of real valued standard Wiener processes ( ( ))k k Nw t 

such that, for all ,k j  and fix [0,1]t , ( )kw t  and ( )jw t  are independent, for all x X  ,

1

, ( )t k k
k

T x x x w t


  



   ,  1 k kR x x  , 1
1

,k k
k

R x x x x


   



   .

Proof. Consider the covariance operator  of the GRE 1T , 1 :R X X  ,  1 1 1R T T . Let ( )k k Nx 
  and

( )kx k N X 
  be such that 1 1 1,k j k j kjR x x ET x T x        , 1 k kR x x  , 1

1

,k k
k

R x x x x


   



   ,  for

all x X  . Denote the real valued processes [0,1] [0,1]( ( )) : ( )k t t k tw t T x 
  , 1,2,...k 

As 1 1 1,k j k j kjR x x ET x T x        , ( )kw t  and ( )jw t  are independent. Then

2 2 2 2

1 1 1

( , ( )) 2 , ,
n n n

t k k t k k
k k k

E T x x x w t ET x t x x t x x       

  

            

= 2

1

, 0k
k n

t x x


 

 

   . Therefore  
1

, ( )t k k
k

T x x x w t


  



   .
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Remark. From the definition of the  generalized Wiener process in a weak sense ( tT ) [0,1]t , as

( ) ( ) min( , ) ( ), ( ) 2 min( , )t k j s k j k j k jET x x T x x t s R x x x x t s               ,  it follows that for the Wiener

processes ( ( ))k k Nw t   in the representation 
1

, ( )t k k
k

T x x x w t


  



   , ( ) ( ) ( ) ( )k j k jEw t w s Ew s w t  . That

is, the random processes  ( )kw t and ( )jw t  as random elements in C[0,1] are  weakly independent.

Now we introduce a very important and well-known definition of a white noise.
Definition 5. Let X be a real separable Hilbert space H. A Gaussian GRE in H with covariance operator  R=I

( :I H H  is an  identical operator) is called a white noise.
Remark. If ( )k k Ne   is an orthonormal basis in H and ( )k k N   is the sequence of independent standard

Gaussian random variables (identically distributed with mean 0 and variance 1), then the sum 
1

k k
k

e 



 , which

does not converge in H, represents a white noise :T H G , 
1

,k k
k

Th e h 




   . Conversely, if we have a

white noise :T H G , then  the random variables ,kTe  k N are standard Gaussian and orthogonal as

, ,k j k j k j kjETe Te Ie e e e        , that is, they are independent.  Denote  k kTe  ,  then

1 1 1

, , ,k k k k k k
k k k

Th T e h e e h Te e h 
  

  

           .

Definition 6. Let H be a separable  Hilbert space. A  Gaussian GRP [0,1]( )t t  is called the canonical

generalized Wiener process in a weak sense in H, if, for all h H , t h  is a Wiener process and the  variance

min( , ) ,t sE h h t s h h     , , [0,1]t s  and h H . That is, the covariance operator of the GRE 1 is an

identical operator :I H H ,  that means, 1 is a white noise in H.

Remark. For any sequence of real valued Wiener processes ( ( ))k k Nw t  , such that for all k j and fix

[0,1]t , ( )kw t  and ( )jw t  are independent and  for  any orthonormal basis ( )k k Ne   in a separable Hilbert

space H, the sum
1

( )t k k
k

e w t




   is a canonical generalized Wiener process in a weak sense in H.  Indeed,

consider the GRP t tT h h  =
1

, ( )k k
k

e h w t




  . It is easy to see that tT h  is a Wiener process and

min( , ) ,t sE h h t s h h     , therefore, [0,1]( )t t  is  a canonical generalized Wiener process in a weak sense.

Now we show that every generalized Wiener process  in a weak sense in a separable Banach space X is an
image of  a canonical generalized Wiener process  in a weak sense by the linear bounded operator .

Proposition  4.  For any  generalized Wiener process  ( tT ) [0,1]t  in a weak sense  in a separable Banach

space X, there exist a separable Hilbert space H, a linear, bounded  operator :A X H   and a canonical

generalized Wiener process [0,1]( )t t  in a weak sense in H such that 
1

( )t t k k
k

T A A e w t


 



    and

1 1R T T A A   .
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Proof. Let ( tT ) [0,1]t  be a generalized Wiener process in X. By the proposition 2 there exist ( )k k Nx X 
  ,

( )kx k N X 
   and a sequence of independent real valued standard Wiener processes ( ( ))k k Nw t    such

that for  all x X  ,  
1

, ( )t k k
k

T x x x w t


  



   ,   1 k kR x x  ,  1 1 1,k j k j kjR x x ET x T x        ,

1
1

,k k
k

R x x x x


   



   .  By the factorization lemma (see [1], lemma 3.1.1), there exist a separable Hilbert

space H and  a linear bounded operator  :A X H  such that  1R A A . Then  1 ,k jR x x   

, ,k j k j kjA Ax x Ax Ax             , , 1, 2,...k j   Therefore :k ke Ax H    1,2,...k  ,  is an  orthonormal

sequence and 1
1 1 1 1

, ( ) , ( ) , , ( )t k k k k k k k
k k k k

T x x x w t R x x w t A Ax x A e x w t
   

         

   

                . For

this sense we write  
1

( )t t k k
k

T A A e w t


 



   .

Definition 7. A Gaussian GRP ( tT ) [0,1]t  is called a generalized Wiener process  if,  for all x X  ,  tT x

is a Wiener process and for all , , [0,1]t s   and ,x y X   , the variance , min( , )t sET x T y Rx y t s      ,

where :R X X  is the covariance operator of  the GRE 1T ; 1 1R T T .

Proposition 5. Let ( tT ) [0,1]t  be a generalized Wiener process. There exist ( )k k Nx X 
  ,

( )kx k N X 
   and a sequence of  real valued  independent standard Wiener processes ( ( ))k k Nw t    such

that for all  x X  , 
1

, ( )t k k
k

T x x x w t


  



   ,  1 k kR x x  , 1
1

,k k
k

R x x x x


   



   .

Proof. As a generalized Wiener process is the  generalized Wiener process in a weak sense, by the

proposition  3, there exist ( )k k Nx X 
  , ( )kx k N X 

   and a sequence of  real valued standard Wiener

processes ( ( ))k k Nw t    such that , for all ,k j  and fix [0,1]t , ( )kw t  and ( )jw t  are independent, for all

x X  ,  
1

, ( )t k k
k

T x x x w t


  



   ,   1 k kR x x  ,  1
1

,k k
k

R x x x x


   



   .  From the condition

, min( , )t sET x T y Rx y t s       it follows, that ( ) ( )k jEw t w s = , min( , ) 0k jRx x t s    ,  that is kw  and jw

are independent  for all k j  .

Definition 8. Let H be a separable  Hilbert space. A  Gaussian GRP [0,1]( )t t  is called a canonical

generalized Wiener process in H, if, for all h H , t h  is a Wiener process and the variance

min( , ) ,t sE h l t s h l      ,  , [0,1]t s  and ,h l H . That is, the covariance operator of the GRE 1
  is an

identical operator  :I H H , that means 1
 is a white noise in H.
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Remark. For any sequence of  real valued independent standard Wiener processes ( ( ))k k Nw t   and an

orthonormal basis ( )k k Ne   in a separable Hilbert space H, the sum 
1

( )t k k
k

e w t




   is a canonical general-

ized Wiener process in H. Indeed,  consider the GRP t tT h h  =
1

, ( )k k
k

e h w t




  . It is easy to see that tT h  is

a Wiener process  and min( , ) ,t sE h l t s h l      , therefore, [0,1]( )t t  is  a canonical generalized Wiener

process.

Proposition  6.  For any  generalized Wiener process  ( tT ) [0,1]t  in a separable Banach space X, theree

exist a separable Hilbert space H, a linear bounded  Operator :A X H  and a canonical generalized

Wiener process [0,1]( )t t  in H such that  
1

( )t t k k
k

T A A e w t


 



    and 1 1R T T A A   .

Proof. Let ( tT ) [0,1]t  be a generalized Wiener process  in X. By the proposition 5, there exist ( )k k Nx X 
  ,

( )kx k N X 
   and a sequence of  real-valued  independent standard Wiener processes ( ( ))k k Nw t   such

that for all  x X  , 
1

, ( )t k k
k

T x x x w t


  



   , 1 k kR x x  , 1
1

,k k
k

R x x x x


   



   . By the factorization

lemma ([1, lemma 3.1.1]),  there exist a separable Hilbert space H and  a linear bounded operator  :A X H such

that 1R A A .  Then 1 , , ,k j k j k j kjR x x A Ax x Ax Ax                 , , 1, 2,...k j   Therefore,

:k ke Ax H  ,  1,2,...k   is an orthonormal sequence and 
1

, ( )t k k
k

T x x x w t


  



   =

= 1
1 1 1

, ( ) , , ( )k k k k k
k k k

R x x w t A Ax x A e x w t
  

      

  

          . For this sense we write  
1

( )t t k k
k

T A A e w t


 



   .

Consider now a Wiener process in a separable Banach space.

Definition  9. A family of random elements (random process)  [0,1]( ( ))tW t   is called a Wiener process in a

separable Banach space X,  if W(0)=0 a.s.; for any 0 10 ... 1nt t t     , the random elements

1( ) ( )i iW t W t  , 0,1... 1i n   are independent; for any [0,1]t , ( )W t is a Gaussian random element with  a

mean 0  and a covariance operator tR , where :R X X  is a Gaussian covariance; [0,1]( ( ))tW t   has
continuous sample paths.

Description of  the class of Gaussian covariance operators is a very important problem (see [1]).  For
example, in the Hilbert space case,  the operator  :R H H  is a Gaussian covariance if, and only if, R is a
nuclear operator.

Proposition 7. The generalized Wiener process  ( tT ) [0,1]t  generates a Wiener process in a separable

Banach space X if, and only if,  the covariance operator 1 1R T T  maps X   to X and is a Gaussian covariance.

That is, there exists the Wiener process [0,1]( ( ))tW t   such that  for all x X  , ( ),tT x W t x    a.s.
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Proof. Let  ( tT ) [0,1]t  be a generalized Wiener process and  1 1 :R T T X X     be a Gaussian covariance,

then there exist ( )kx k N X 
   and ( )kx k N X   such that ,k j kjRx x     , k kRx x  ,

1

,k k
k

Rx x x x


 



   , x X  . Consider the GRP  
1

, ( )t k k
k

T x x x w t


 



    . As  R is a Gaussian covariance,

by the Ito-Nisio theorem (see[2]), we have  convergence  of the sum 
1

( )k k
k

x w t



  in the Banach space X.

Denote ( )W t 
1

( )k k
k

x w t



 . It is easy to see that [0,1]( ( ))tW t   is a Wiener process in a Banach space X.

Conversely, if  [0,1]( ( ))tW t   is a Wiener process in X, then ( ),tT x W t x    ,  x X  ,  [0,1]t is a general-

ized Wiener process.

Proposition 8. [0,1]( ( ))tW t   is a Wiener process in a Banach space X, if, and only if, there exist  a

separable Hilbert space, a canonical generalized Wiener process [0,1]( )t t  in it and a linear bounded

operator :A X H  , such that A A  is a Gaussian covariance and  
1

( ) ( )t k k
k

W t A A e w t


 



   . The

last sum converges  in X  a.s.

Proof.  Let [0,1]( ( )) tW t   be a Wiener process in X ,  then 
1

1

,W k k
k

Rx R x x x x


  



    

=
1 1

, ,k k k k
k k

A Ax x A Ax A e x A e
 

       

 

      , where :A X H  , H is a separable Hilbert space and

( )k k Ne   is an orthonormal basis on it. By the propositions 4 and 5, we have 
1

( ) ( )k k
k

W t A e w t






 

1

( )k k
k

A e w t






  and the last sum converges a.s. in X.

It is true more deep results (see [3] and [4]), which show that the convergence of the sum in proposition
7 is uniform for t a.s. (for ) and there exists another representation of the Wiener process in a Banach
space by the sum  of independent, identically distributed Gaussian random elements uniformly converging
for   t a.s. (for ).

Let us now define Wiener processes in a weak sense.
Definition 10. A family of  Gaussian random elements  is called a Wiener process in a weak sense in a

separable Banach space X, if, for all x X  , [0,1]( , )t tW x   is a real valued Wiener process with variance

,t Rx x   , where R is the covariance operator of the random element  1W .
Remark.  It is clear that  Wiener process in a common sense  is a Wiener process in a weak  sense. We

give in 2R  a simple example of a Wiener process in a weak sense, which  isn’t a Wiener process in a
common sense.
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Example 1. Let , 0,1,...ke k   be a Haar orthonormal basis in 2[0,1].L  It is easy to see, that if 1,t   then

1

0
0

( ) 1e d    and 
1

0

( ) 0ke d    for all 1k  ; if 1
2

t  , then 
1

2

0
0

1( )
2

e d   , 

1
2

1
0

1( )
2

e d   , and

1
2

0

( ) 0ke d    for all 2k   and so forth,  if 
1

1
2 2 1

2

k n

k nt



 

 , for any natural n and 12 2n nk   ,  we have

0

( ) 0
kt

ke d    and for all m k  
0

( ) 0
kt

me d   .

 Let R  be a 4 4 dimension matrix

0 0
0 0
0 0

0 0

R

 
 
 

 

 
  
 
 
 

, ( )  .

Let ( ) ( ) ( ) ( )
1 2 3 4( ) : ( , , , )n n n n

n n N n N     
  be  a sequence of independent, identically distributed Gaussian

random vectors in 4R  with a mean 0 and a covariance operator R. Then  the random elements ( )n n N 


 in 2R

( ) ( )
2 1 2( , )n n

n  


 and  ( ) ( )
2 1 3 4( , )n n

n   


, 0,1,...n  are weakly independent  Gaussian random elements

in 2R . If we consider the 2R -valued random process 
1 0

( ) ( )
t

k k
k

W t e d 




 , where  ( )k k Ne   in 2[0,1]L  is

a  Haar basis , then it is easy to see  that  [0,1]( ( ))tW t   is a Wiener process in a weak sense, but it isn’t a Wiener

process in a common sense in 2R ; indeed, we show for example, that 1
2( )W  and  1

2(1) ( )W W  are not

independent. It is easy to see that 
1

1 0 0 0
0

( )W e d   


 and 
1 1

2 2

1
2

1
0 0 1 1 0 12

0 0

( ) ( ) ( )W e d e d         
 

.

Let 2,f g R  be such that 1 0, ,E f g o    

1 1
2 2

1 1
1 0 1 0 1 1 04 2, , , , , , 0E W f W W g E f g E f g                    .

Therefore, 1
2( )W  and  1

2(1) ( )W W  are not independent.

 Now we provide  representations of the Wiener process in a weak sense with the sum of weakly  inde-
pendent identically distributed Gaussian random elements in X. Remember that  the random elements

1 2, ,...., n    are called weakly independent, if,  for  all x X  ,  the random variables

1 2, , , ,...., ,nx x x           are independent.

The following theorem is true.
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Theorem 1. Let ( )k k Ne   be a Haar orthonormal basis in 2[0,1]L ,  1 2, ,....  be a sequence of weakly

independent identically distributed  Gaussian random elements in X, then the sum  
1 0

( )
t

k k
k

e d 



  con-

verges uniformly for t a.s. (for ) in X  to the Wiener process in a weak sense.
The proof of this theorem is analogous to the proof of the theorem 1 in the case when  ( )k k Ne   is a Haar

orthonormal basis ([6, 126]).
Now we show  that every Wiener process in a weak sense can be represented as a sum from Theorem 1.

Theorem 2. Let  [0,1]( ( ))tW t   be a Wiener process in a weak sense with the covariance operator R of  the

random element (1)W , there exists the sequence of weakly independent, identically distributed Gaussian

random elements ( )k k N   with a mean 0 and a covariance operator R such  that  ( )W t 
1 0

( )
t

k k
k

e d 





a.s., where  ( )k k Ne   is a Haar orthonormal basis  in  2[0,1]L .

Proof. For any fix x X  ,  the  random process [0,1]( , )t tW x    is a real valued Wiener process. There-

fore, there exists the sequence  ( ( ) )k k Nx 
 of standard Gaussian independent random variables such that

1 0

( ), , ( ) ( )
t

k k
k

W t x Rx x e d x 


   



     .  For any fix k N consider the GRE :kT X G  ,

1 2, ( )k kT x Rx x x      . It  is easy to see that this definition is correct. T is a Gaussian GRE with the

covariance operator  R. As R is a  Gaussian covariance, there exists the Gaussian random  element k  in X with

a mean 0 and a covariance operator R such that  ,k x   
1 2, ( )k kT x Rx x x      , x X  . It is clear

that the random elements  k , 1,2,...k   are weakly independent. Therefore, we have  
1 0

( )
t

k k
k

e d 



 .

From theorems 2 and 3 follows
Corollary. Wiener process in a  weak sense  has a.s. continuous sample paths.
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maTematika

vineris procesebi banaxis sivrceSi

b. mamforia

saqarTvelos teqnikuri universitetis niko musxeliSvilis sax. gamoTvliTi maTematikis instituti,
Tbilisi

(warmodgenilia akademikos n. vaxanias mier)

ganxilulia vineris procesebi banaxis  separabelur sivrceSi (ganzogadebuli vineris
procesebi, susti azriT vineris procesebi, vineris procesebi Cveulebrivi azriT) da
miRebulia maTi warmodgenebi damoukidebeli (sustad damoukidebeli), erTnairad
ganawilebuli, gausis  SemTxveviTi elementebisagan Sedgenil mwkrivTa jamebis meSveobiT.
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