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ABSTRACT. The analysis of the definition of Wiener process in a Banach space is given. It considers
the definitions of generalized Wiener process and Wiener process in a weak sense. The representations
of them by the sums of identically distributed independent (weakly independent) Gaussian random elements
are given. © 2013 Bull. Georg. Natl. Acad. Sci
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Let X'be areal separable Banach space, X " -its conjugate, B (X) - the Borel o -algebra of X, (2,B,P) -
a probability space. The continuous linear operator 7: X" — L, (€, B,P) is called a generalized random
element (GRE). We consider such a GRE, which maps X " toa fix closed separable subspace G < L ,(€,B,P).

Denoteby M, = L(X",G) the Banach space of the GRE with the norm ||T || a, = SUD <y
1 <

X
Tx “ . A random
LZ

.\ 2
element (measurable map) & : Q2 — X issaid to have a weak second order, if for all x* € X*,E <§, X > <o0,

We can realize the random element & as an element of M, : T; x =<§,x*> (Continuity of 7 follows from the
closed graph theorem). Denote by M, the linear space of all random elements of the weak second order with
the norm |[&]= "Tg” Thus, we can assume M, M,. Let T e M,. Consider the map m; : X* — R,
myx" = ETx" . This is a linear and bounded functional, therefore m; € X™* and it s called the mean of GRE
T.Llet T'x" =Tx" —<mT,x*> . The covariance operator of the GRE T'is called the operator R =T" T"'.
Ry : X" — X is a positive and symmetric linear operator. Further, without the loss of generality, we con-

sider random elements (GRE) with themean 0. If 7' =T; € M,, then R, maps X “to X (see[1], theorem

3.2.1). If R is a positive and symmetric linear operator from X to X, then there exist (x;) .y < X and
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6 Badri Mamporia

(X;) ren< X such, that (Rx,",x;") =8y, Rx,” =x;, Rx* = z<xk,x*)xk , x" e X* (see[1]lemma3.1.1).
=

In general, as G is a separable, for R: X" — X" there exist (x",) ,.yc X" and (x™,) .y X" such
that(ka*,xj*) _ 5}(] ka* _ xk**’ Rx* = z<x**k’x*>x**k ’ e xt .
k=1
We consider weakly independent random elements in a Banach space.
Definition 1. Random elements &;,&,,...,&, are called weakly independent in X ([1: 259; 5]), if for all
x" € X", therandom variables (&,x"),(&,,x"),....({,,x") areindependent.
Proposition 1. If the weak second order random elements &,,&,,...,5, are weakly independent , then

the cross-covariance operators of the random elements&; and &; i, j =1,..n are antisymmetric; the Gaussian

random elements &,,&,,...,&, are weakly independent if and only if their cross-covariance operators are

antisymmetric.

Proof. As & and &; are weakly independent, for all x" and y"from X", E(E,x"+y") &5 +))=0,
but  E(G, Xy )&, X+ y )= B x N x M EG,x ) E I EXGL yINE X7 +E(G, VIKE 0 )=
= (&, X" )&,V )+ E(G;, v XE; x") =0 Therefore, E(&;,x X&;,y") = —E(&,»") (§;,x").

That is, (R;x", y*) = ~(R;¥",x"). If &,&)5--.¢, are Gaussian and (R;x™,y") =~(R;¥",x"), then the
random variables (&, x"),(&,,x"),...,(&,,x") arenon-correlated, therefore, they are independent, that is, the
random elements &,,&,,...,&, are Gaussian weakly independent. Consequently, if the random elements

£,&,5,+&, are weakly independent, then the covariance operator of X" valued random element

& =(§,6,",&,) maps (X*)” to X" and is given by

Ry Ry - Ry,

R, Ry - Ry,
R=| - G e |

~R, -Ry, - R,

where Rij* =—R; = R;;.Now we consider the weakly independent GREs.

Definition 2. The generalized random elements 7}, 75,...T, are called weakly independent, ifforall x* € X,
the random variables 7;x",7,x",..T,x" are independent.

If the GREs T},7,,...T, are weaklyindependent, then the cross-covariance operators of the GREs 7} and
T; i,j=1,..n are antisymmetric: R; : X" — X", (R;x",y") = E(Tx'T;y" = «(R;y",x") =—ET,y"T;x".
Gaussian GREs are weakly independent if, and only if, their cross-covariance operators are anti-symmetric.
The following proposition gives the representation of the GRE by the sum of non-correlated random vari-

ables. If the GRE is Gaussian, then, obviously, the corresponding random variables are independent standard

Gaussian.
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Proposition 2. Let T be a GRE. There exist (x," ),y and (x™) rey< X such that forall x* € X*,

o0 o0
* * *% * * * * * * *k * *k * *%
Tx =z<x X Tx  (Rpxy ,X; ) =ETx, ij :SkerTxk =x.", Ryx =z<x XX There-
k=1 k=1

fore, if Tis Gaussian, then Tx,, k =1,2,...are independent standard Gaussian random variables.

Proof. Consider the covariance operator of the GRE 7', R, : X* — X™, R, =T"T . Let (x;"),.y and

(x"}) oy X besuch that (Rpx”,x;") = ETx,"Tx;" =6y, Ry = x™ Ryx* = z<x**k’x*>x**k , for
k=1

n
all x* € X*.1f we take up 7,x" = z<x*,xk**)Txk*, then E(Tx* -T,x*)* = ETx** —2ETx'T x* +T,x** =
k=1

0 n n 00 0
= Z(xk**, x*)2- 2Z<xk**, x4 z<xk**,x*>2= 2 (x,"",x"y*— 0. Therefore Tx" = z<x*,xk**)Txk* )
k=l =1 =l k=1

k=n+1

The family of the GRE (7} ) /[0, is called a generalized random process (GRP).

Definition 3. AGRP (7} ) o, is called Gaussian, if for any natural number n, ¢,,,...,¢, from [0,1],
X'1,X 50X, from X, the random vector (7,x,", Tox," ..., T,x,," ) is Gaussian.

Definition 4. A Gaussian GRP (7] ) ;¢ is called generalized Wiener process in a weak sense, if for all
x* e X*, Tx" is a Wiener process. The variance ET,x'T.x" =(Rx",x")min(z,s) , where ¢,s5,€[0,1] and
R: X" — X™ isthe covariance operator of the GRE 7} ; R=T,"T,.

Proposition 3. Let (T,),q01) be a generalized Wiener process in a weak sense. There exist

X, c X', (™ c X and a sequence of real valued standard Wiener processes (w, (t
k JkeN k) keN q k\Eken

such that, for all k# j, and fix t€[0,1], w, () and w;(t) are independent, for all xeX”,

Ix" = z<x*axk**>wk(t)’ Ryx =x"" Rx" = Z<x**k,x*>x**k :
k=l k=1
Proof. Consider the covariance operator ofthe GRE 7}, R : X" — X, R =TT, . Let (% gey and

(x**k) kENC X** be SllCh that (R,xk*,xj*) — ETlxk*T]xj* :Skj ,Rlxk* :xk**’ R]x* _ z<x**k’x*>x**k , fOI'
k=1
all x" € X*. Denote the real valued processes (W ()¢5 = (T,xk*),e[o’]] , k=12,...
As (Rx,",x;") = ET,x,"Tix;" = 8;;, w(¢) and w;(?) are independent. Then
n

n n
E(x =Y " x we(0)? = BT =20y (2" g )21 (x ) =
k=1 k=1

k=1

=t z (x*,x,")y* = 0. Therefore Tx" = z<x*,xk**)wk .
k=n+1 k=1
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Remark. From the definition of the generalized Wiener process in a weak sense (7} ) [0, » as
ET,(x," +x,;)T, (%" +x,") = min(t, s)(R(x;” +x;7),(x;" +x,7)) = 2min(z,5) , it follows that for the Wiener

processes (W (¢));oy in the representation 7,x" = z<x*,xk**)wk (t), Ew (O)w;(s) =—Ew, (s)w;(t) . That
k=1
is, the random processes w; (t) and W;(¢) as random elements in C[0,1] are weakly independent.

Now we introduce a very important and well-known definition of a white noise.
Definition 5. Let X be a real separable Hilbert space H. A Gaussian GRE in H with covariance operator R=/
(I :H — H isan identical operator) is called a white noise.

Remark. If (e, ), is an orthonormal basisin Hand (¥, ), is the sequence of independent standard

Gaussian random variables (identically distributed with mean 0 and variance 1), then the sum z ey , which
k=1

does not converge in H, represents a white noise 7: H > G, Th = z<ek,h);/k . Conversely, if we have a
k=1
white noise 7 : H — G, then the random variables Te,, k e N are standard Gaussian and orthogonal as

ETe,Te; =(ley,e;) =(e;,e;) = b, , that is, they are independent. Denote Te; =y, then

Th=T (e hdey = Y (e, Tey =D (ephyyy |
k=1 k=1 k=1

Definition 6. Let H be a separable Hilbert space. A Gaussian GRP (Y )0, is called the canonical
generalized Wiener process in a weak sense in H, if, for all e H , Y,/ is a Wiener process and the variance
EY,hY ;h =min(t,s)h,h), t,s €[0,1] and i e H . That is, the covariance operator of the GRE Y, is an
identical operator /: H — H , thatmeans, Y, is a white noise in /.

Remark. For any sequence of real valued Wiener processes (w; (¢)),cy > such that for all £ # j and fix

t €[0,1], w,(r) and w;(¢) are independentand for any orthonormal basis (e;),.y in a separable Hilbert

0
space H, thesum Y, = Zek w, (¢) is a canonical generalized Wiener process in a weak sense in /. Indeed,
k=1

consider the GRP T,h=Y h= z<ek ,myw (?) . It is easy to see that 7,/ is a Wiener process and
k=1
EY ,hY ¢h = min(t,s)h, h) , therefore, (Y,),c0,7 1S acanonical generalized Wiener process in a weak sense.

Now we show that every generalized Wiener process in a weak sense in a separable Banach space X'is an

image of a canonical generalized Wiener process in a weak sense by the linear bounded operator .
Proposition 4. Forany generalized Wiener process (T, ) 0,1 in a weak sense in a separable Banach

space X, there exist a separable Hilbert space H, a linear, bounded operator A: X* — H and a canonical

generalized Wiener process (Y,),qo,) in a weak sense in H such that T, = AY, = ZA*ekwk (t) and
k=1
R=T{T,=A"A.
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Proof. Let (7} ) 0,1 be a generalized Wiener process in X. By the proposition 2 there exist (5 ey € X7,
(x™}) rey< X7 and a sequence of independent real valued standard Wiener processes (w; (¢));.y such

that for all x"eXx*, Tx"= z<x*,xk**)wk(t) . RxS=x"", (Rx.x")=ETx Tix;" =6,
k=1

Rx" = z<x**k ,x")x™, . Bythe factorization lemma (see [1], lemma 3.1.1), there exist a separable Hilbert
=

space H and a linear bounded operator A:X* — H such that R =A*A. Then (Ryx,,x;")=

=(A"Ax;",x;") =(Ax.", Ax ") = 8 k, j,=1,2,... Therefore ¢, == Ax," € H k=1,2,..., isan orthonormal

sequenceand Tyx" =" (x", . w ()) = D (R, x"Ww () = Y (47" x") = ) (A€, x"Iw (¢) . For
k=1 k=1 k=1 k=1

this sense we write 7, = 4"Y, = iA*ekwk ().
k=1
Definition 7. A Gaussian GRP (7, ) ,jo;; is called a generalized Wiener process if, for all x™ € X, Tx"
is a Wiener process and for all 7,5,€[0,1] and x*,y" € X", the variance ET,x'T,y" = (Rx",y")min(t,s),
where R : X* — X is the covariance operator of the GRE 7, ; R=T1;"T,.
Proposition 5. Let (T; )01 be a generalized Wiener process. There exist (x," ).y € X,
(x™}) ey X and a sequence of real valued independent standard Wiener processes (w; (t));cy Such

o0 o0
that forall x* e X*, Tx" = z<x*,xk**)wk(t), Rix,"=x"", Rx" = z<x**k,x*)x**k .
k=1 k=l

Proof. As a generalized Wiener process is the generalized Wiener process in a weak sense, by the

proposition 3, thereexist (x,"), .y € X", (x";) ey X and asequence of real valued standard Wiener

processes (W (¢)),y such that, for all k = j, and fix 7 €[0,1], w,(t) and W;(?) are independent, for all

XeX', Tx'= z<x*,xk**>wk(t), Rx =x", Rx"= z<x**k,x*)x**k . From the condition
k=1 k=1

ETX'T,y" =(Rx",y")min(t,s) it follows, that Ew, (1)w; (s)=(Rx,”,x;")min(t,s) =0, thatis w; and w,

are independent forall k= j .

Definition 8. Let H be a separable Hilbert space. A Gaussian GRP (Y;),o, is called a canonical

generalized Wiener process in H, if, for all e g, Y;# is a Wiener process and the variance

EY;hY'l =min(t,s)(h,l), t,s<€[0,1] and &,/ € H . That is, the covariance operator of the GRE Y,’ is an

identical operator J:H — H ,thatmeans Y, isa white noise in H.
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Remark. For any sequence of real valued independent standard Wiener processes (W (¢)),cy and an

orthonormal basis (e; ).y in aseparable Hilbert space H, thesum Y, = Zek w, (t) is a canonical general-
k=1

ized Wiener process in . Indeed, consider the GRP T,h =Y ;h= z<€k ;)W (1) Tt is easy to see that T/ is
k=1

a Wiener process and EY;AY'l =min(t,s)(h,I), therefore, (Y}),c01) is a canonical generalized Wiener
process.

Proposition 6. For any generalized Wiener process (T, ) [0, in a separable Banach space X, there
exist a separable Hilbert space H, a linear bounded Operator A: X" — H and a canonical generalized
Wiener process (Y )01y in H such that T, = A'Y, = ZA*eka (1) and R=T'T, = A"A .

k=1
Proof. Let (7} ) ,[o,1) bea generalized Wiener process in X. By the proposition 5, there exist (x,”),.y < X

(x™}) ey X7 and a sequence of real-valued independent standard Wiener processes (w (1)), such

thatforall x* ¢ x*, T,x" = z<x*,xk**)wk (0> Rx," =x", Rx" = z<x**k,x*)x**k . By the factorization
k=1 k=1

lemma ([1, lemma 3.1.1]), there exist a separable Hilbert space Hand a linear bounded operator 4 : X — H such

that R=A4"A. Then (Rx,,x;") = (A" Ax, ", x ") =(Ax", Ax;") = 6, k, j,=1,2,... Therefore,

o0
e =Av, " eH, k=12,. is an orthonormal sequence and T7,x"= z<x*,xk**)wk =
=

= Z<R]xk*,x*) we (1) =Z<A*Axk*,x*) =Z<A*ek,x*)wk (¢) . For this sense we write T,=A*Y,'=z Aew (1),
k=1 k=1 k=1 k=1

Consider now a Wiener process in a separable Banach space.

Definition 9. A family of random elements (random process) (W (¢)), 1 is called a Wiener process in a
separable Banach space X, if W(0)=0 a.s.; for any 0<¢, <f, <..<t, <1, the random elements
Wt )-W(),i=0,1..n—1 areindependent; for any ¢ €[0,1], W(¢) is a Gaussian random element with a
mean () and a covariance operator R, where R: X" — X is a Gaussian covariance; (W (?)),qo,; has
continuous sample paths.

Description of the class of Gaussian covariance operators is a very important problem (see [1]). For

example, in the Hilbert space case, the operator R:H —» H is a Gaussian covariance if, and only if, R is a

nuclear operator.

Proposition 7. The generalized Wiener process (T, )01 generates a Wiener process in a separable
Banach space X if, and only if, the covariance operator R = T,"T, maps X~ to X and is a Gaussian covariance.

That is, there exists the Wiener process (W (t)),qo,1) such that forall x* e X*, T,x" =<W(t),x” > a.s.

Bull. Georg. Natl. Acad. Sci., vol. 7, no. 2, 2013
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Proof. Let (7 ),c[01] bea generalized Wiener processand R =7,"T; : X* — X be a Gaussian covariance,

then there exist (x",) ,.ycX* and (x) ;cycX such that(Ry ,x;")=8,,Ry,* =x,,

Rx" = z<xk,x*)xk , x* e X*. Consider the GRP T,x" = z<x*,xk yw, (f) . As Risa Gaussian covariance,
= =

by the Ito-Nisio theorem (see[2]), we have convergence of the sum Zxk w,(¢) in the Banach space X.
k=1

Denote W(t)= Zkak (1). It is easy to see that (W (7)), is a Wiener process in a Banach space X.
k=1

Conversely, if (W (?)),,17 is a Wiener process in X, then 7,x" = (W (£),x"), x* € X",  €[0,1]isa general-
ized Wiener process.
Proposition 8. (W (1)),01) is a Wiener process in a Banach space X, if, and only if, there exist a

separable Hilbert space, a canonical generalized Wiener process (Y {),co1y in it and a linear bounded

operator A: X" — H , such that A" A is a Gaussian covariance and W(t)= A"Y, = ZA*eka (t). The
k=1

last sum converges inX a.s.

Proof. Let (W(#),qo;; be a Wiener process in X, then Rx*zRWlx*=Z<xk,x*)xk=
k=1

=Z<A*Axk*,x*)A*Axk* = Z<A*€k,X'>A*€k, where 4: X" — H, H is a separable Hilbert space and
o =l

(ex)ren 1s an orthonormal basis on it. By the propositions 4 and 5, we have W(t)= A*Zekwk )=
k=1

= z A’e,w, (r) and the last sum converges a.s. in X.
k=1

It is true more deep results (see [3] and [4]), which show that the convergence of the sum in proposition
7 is uniform for ¢ a.s. (for € Q) and there exists another representation of the Wiener process in a Banach
space by the sum of independent, identically distributed Gaussian random elements uniformly converging
for ta.s. (forme Q).

Let us now define Wiener processes in a weak sense.

Definition 10. A family of Gaussian random elements is called a Wiener process in a weak sense in a
separable Banach space X, if, for all x* € X™, (W, x*>),e[0’]] is a real valued Wiener process with variance
t(Rx",x") , where R is the covariance operator of the random element w.

Remark. Itis clear that Wiener process in a common sense is a Wiener process in a weak sense. We

give in R* a simple example of a Wiener process in a weak sense, which isn’t a Wiener process in a

common se€nse.

Bull. Georg. Natl. Acad. Sci., vol. 7, no. 2, 2013
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Example 1. Let e,k =0,1,... be a Haar orthonormal basis in Z,[0,1]. It is easy to see, thatif ¢ =1, then

b b

1
Ieo(r)dz':l and jek(z')dT:O for all k>1; if tzé, then J.eo(f)dle, J.e](q;)dz-zé, and
2
0

0 0 0

% 2k _ 2n+]

J.ek (r)d7 =0 forall f > 2 andsoforth, if ¢, = e , for anynatural nand 2" < k <2"*!, wehave
0

I I
J.ek(r)dr;tO and for all m > k J.em(r)drzo.
0 0

Let R bea 4x4 dimension matrix

c 0 0 «
0 o —-a 0
R:
0 —«a 0|,(c>a).
a 0 0 o

Let (77,),en = 0" 1, 115" ,n,),.y be asequence of independent, identically distributed Gaussian

random vectors in R* with a mean 0 and a covariance operator R. Then the random elements (€),en in R 2

g, =m",n,") and & =M™ ™), n=0,1,... are weakly independent Gaussian random elements
o !

in R?.Ifwe consider the R?-valued random process W (t) = Zjek (r)dt&, ,where (e, ),y in L,[0,1] is
k=1 ¢

a Haar basis, then it is easy tosee that (W (¢)),q,; isa Wiener process in a weak sense, but it isn’t a Wiener

process in a common sense in R?; indeed, we show for example, that W(%) and W(1) —W(%) are not

1 % A
independent. It is easy to see that 7| = Ieo (r)dté, =¢, and W% = J.eo (T)dffo + J‘e] (r)duf] = %(50 +¢) -
0 0 0

Let f,g e R* be such that E(&, f)&,g) #0
E(W%,fXW] —W%,g> =17E<§o +&,/XE =6, 8) =l2E<§1sf><§Osg> #0.

Therefore, W(%) and W(l)—W(%) are not independent.

Now we provide representations of the Wiener process in a weak sense with the sum of weakly inde-

pendent identically distributed Gaussian random elements in X. Remember that the random elements

&,65506, are called weakly independent, if, for all x*e X*, the random variables

(&, X ), (Ey X7 ), s (&, x7) are independent.

The following theorem is true.

Bull. Georg. Natl. Acad. Sci., vol. 7, no. 2, 2013
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Theorem 1. Let (e, ),y be a Haar orthonormal basis in L,[0,1], &,&,,.... be a sequence of weakly

o t
independent identically distributed Gaussian random elements in X, then the sum ZIek (v)d7, con-
k=1 ¢

verges uniformly fort a.s. (for o € Q) in X to the Wiener process in a weak sense.
The proof of this theorem is analogous to the proof of the theorem 1 in the case when (e; ),y isa Haar

orthonormal basis ([6, 126]).

Now we show that every Wiener process in a weak sense can be represented as a sum from Theorem 1.

Theorem 2. Let (W(t)),0,1) be a Wiener process in a weak sense with the covariance operator R of the
random element W (1), there exists the sequence of weakly independent, identically distributed Gaussian

t

random elements (&, ),y With a mean 0 and a covariance operator R such that W(t) = ZJ.ek (t)dE;
k=1 ¢

a.s., where (€ )rey is a Haar orthonormal basis in L,[0,1].

Proof. For any fix x* € X , the random process ((W,,x*>)te[o’]] is a real valued Wiener process. There-

fore, there exists the sequence (7 ((x* ))),fE ~ of standard Gaussian independent random variables such that

o 1t
(W(t),x*)=(Rx*,x*>ZIek(r)dTyk(x*). For any fix e N consider the GRE 7,: X -G,
k=1 ¢

T,x" = (Rx*,x*)/? ¥ (x"). It is easy to see that this definition is correct. 7 is a Gaussian GRE with the
covariance operator R. As Risa Gaussian covariance, there exists the Gaussian random element &, in X with

a mean 0 and a covariance operator R such that (&,,x") = T;x" = (Rx*,x")/? 7e(x), x" e X . Itis clear

o t
that the random elements &, k =1,2,... are weakly independent. Therefore, we have ZIek (v)d©, .
k=1 ¢

From theorems 2 and 3 follows

Corollary. Wiener process in a weak sense has a.s. continuous sample paths.
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