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ABSTRACT. Generally, each case at the Court is preceded by preparatory work. If the number of
judges, court halls or budget amount is not sufficient, resulting waiting list will require certain time to
be considered. On the other hand, according to the law, each particular case should be considered within
a certain period after its starting. Obviously, during the process of new court planning or existing court
functioning, it is desirable to know in advance whether the time period for each case discussion is
conformable to the terms defined by the law for the given number of judges, court halls or budget amount.

A lot of mathematical modelling tasks for mass service as well as for the Courts are reduced to the
solution of homogeneous equation with two variables, the precise solution of which is often impossible.

The article considers the mathematical model of the Courts functioning as a three-phase system of
mass service, where, the first phase (subsystem) reflects the specificity of the judge’s activities, the
second phase - budget amount and the third — Court halls completeness. This mathematical model
represents systems of differential and integral equations.

The paper considers the solution of a mathematical model (homogeneous equation with two variables)
in the form of a row that enables identification between the real process and appropriate mathematical
model, by the modern informatics technology and software achievements, thus providing the imitation of
Courts normal functioning. Generally, a lot of mathematical modelling tasks are often reduced to the
solution of homogeneous equation with two variables, the precise solution of which is often impossible.
The article considers the solution of such equations in the form of a row that provides identification
between the real process and appropriate mathematical model for each particular case and process by the
modern informatics technology and software achievements. © 2013 Bull. Georg. Natl. Acad. Sci.
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A lot of mathematical modelling tasks are often reduced to the solution of differential and integral equa-
tions [1-4]. For example, the mathematical model of the Courts functioning is considered as a three-phase
system of mass service with feedback [1], where, the first phase (subsystem) reflects the specificity of the
judge’s activities, the second phase - budget amount and the third — Court halls completeness. This math-

ematical model represents systems of differential and integral equations, with difficult solution.
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The paper considers the solution of homogeneous integral equation with two variables — mathematical
modelling of mass service system — in the form of a row that provides possibility to use modern information
technology and software achievements for the definition of row convergence and amount of its members for
each particular case.

As we know [2], Volterra equation of the second kind

o(x)=2[R(x,y)0(y)dy+ f(x) (1)

0
has only one solution (where R (x, y) is a continuous function on atriangle 0< y<x<a, aeR, 1€C)
that is given by the so-called Neumann series:
o(x) =2 A (K" ) (),

k=0

where the K operator is defined by the following formula:

(KF)(x) = [R(x,2)f ()dby.

We will consider the issue related to the existence of nontrivial solutions for the following homogeneous

integral equation:
tx t
go(t, x) = lJ.IERl (x,y,r)go(r,y)dydr + jiRz (T)go(r,x) dr. Q)
00 0
We consider an ordinary flow without feed-back incoming on some mass service system [2]. In particular
it means that for each & >1):

P, (t,t+At)=0(At), (3)

where P, (1,1+At) is the probability of the case, where more than one request will be received during the

[t, t +At] time period. Suppose that the service time is a random quantity with Q(x) distribution and the

limits are:
i Po(t,t+At)—1_SR
A}LT})T— 2 (D), @
, . Pl(tt+ At
Q(x—y)gggnogwl(x,y,r), 5)

where B, (t, t+ At) is the probability of the case where exactly & requests will be received during the [t, t+ At]
time period.

B(t) defines the sum of the time periods needed for the requests service incoming in the system before
t moment (including f moment) and ¢ (t, x) is the possibility of the case where B(¢) < x.Foreach x, ¢, At>0:

@(t+At,x)=@(t,x) Py (1,0 +At)+ P(t,t+ At) Py (1, + At),
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where P(t,t+At) is the possibility that the sum of time needed for incoming requests service during

[t,t+At] time period and B(f) does not exceed x. Since P(z,¢+Ar) is the limited function, taking into

account (3):

o(1-+At,x) =g (t,x) _ o(1%) R(tt+A)-1 P(B@)+B <x)R(n1+Ar) +5(At).
At At At At

As well as taking into account that Az — 0 and (4):

awg’x) = p(£.x) R, (1) + P(B() + B, < x)+ EL%P‘(+:AI)
As we know [2]
P(B()+B, <x)=j;P(B(t)<x—y)Q'(y)dy =';|£g0(t,x—y)Q'(y)dy =J:go(t,y)Q'(x—y)dy
and
64”;”‘) = (1) %, () _IW’ Q' (x ~ y)dy ggp‘(%:m) .

Taking into account (5), the following equality is obtained:

op(t,x)
ot

= go(t,x)‘ﬁz(t)+ljg0(t,y)9%l (x,p,t)dy

integration of which obtains (2) equality. Thus ¢ satisfies (2) and is not trivial.
To find out function @ , note that

o(t,x)=PR (0, t)+ Y P(B +B,+..+ B, <x) B(0, ), ©)

0
k=1

where B, is the time needed for the service of k request. If functional operator is:
Ko (£)(x)=[0(x=») f'(»)dy,
0

then P(B, +B, +..+ B <x)= Kg" (Q)(x), foreach f >1.
Thus (6) will be:

o(t.x)= B (0. 1)+ Y KL (0)(x) B.(0. 1) )

k=1

Varying the distribution law of needed time for requirements flow and requirements service, various (2)

equations and private solution will be obtained. For example, in the case of the simplest flow:

A k
P (t, t+Ar)= %e”’.
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Then R, (¢)=-u and R, (t)=%Q’(x—y).

The equation (2) will be:
o(t.x) = ,uj:j:Q'(x— )0 (. v) dvdz - ,uj).(p(r,x)dr ®
and formula (7) will be:
o(t,x)= " {1 3 (“k!’)k K5 (0)(x) | ©)

In particular, finally we see that (9) is the solution of (8) for each Q function, which is the distribution
function of the random quantity. Note that in case we place (9) directly in (8), this fact cannot be verified since
we know nothing about equal convergence of the row in (9).

The obtained result enables identification of input row convergence (9) and the amount of the row

members by mathematical modeling of software system
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