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ABSTRACT. A nonlocal contact boundary problem for two-dimensional linear elliptic equations is
stated and investigated. The uniqueness of the solution is proved. The iteration process is constructed,
which allows one not only to prove the existence of a regular solution of the problem, but also to develop
an approximate algorithm of its solution. The solution of a nonlocal contact problem is reduced to the
solution of classical boundary value problems, in particular to the solution of Dirichlet problems.
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1. Introduction. The history of investigation of nonlocal boundary value problems began in the 20th
century [1,2]. The publication of [3, 4] gave impetus to numerous studies in this direction. The results
obtained in these works were generalized and refined from the standpoints of theory and application [5-19].

In the last two decades, extensive studies of nonlocal initial-boundary and boundary value problems were
carried out, general theoretical fundamental principles of analysis were formulated, methods were developed
for the numerical solution of problems and for the construction of mathematical models of concrete problems
in physics, ecology, biology, economics and other areas.

In the present paper, the boundary value problem with nonlocal contact conditions for linear elliptic
equations of the second order is stated and investigated in two-dimensional domains. The iteration process
is constructed, which allows one to reduce the solution of the initial problem to the solution of a sequence of
classical Dirichlet problems. It is obvious that the investigation of nonlocal contact problems is an important
direction of applied and computational mathematics.

2. Statement of the Problem. Let us consider the bounded domain D in R?with piecewise smooth

boundary I". We choose two simple points A4,, B, [18] on I' and assume that at these points the tangent

to I' exists. Further, we draw, in D the simple smooth curve Iy, connecting 4, and B, . Itis assumed, that
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the curve I'y has the tangents at 4, and B, , not coinciding with the tangents of the contour I" in the same
points. It is obvious that I", divides D into two parts (domains) D~ and D, and the boundary I' into two
curves I'y and ', sothat D=pD~UD*UT,, D =I,Ur,UD", D" =T,UTr,UD" (Fig.1).

Assume that I"_ is the diffeomorphic image of I', which lies in D~ and adjoins I'; at the points A_and
B_; T'_ and I'| are not the tangents at the points 4 and B_.

Assume also that I", is the diffeomorphic image of T, , which lies in D" and adjoins I", atthe points A,
and B, ; I', and I', are not the tangents at the points 4, and B, .

Assume further that the point A_ is between the points 4,and B_, and the point B_ is between the points

A_ and B, . Also assume that the point A4, is between the points 4, and B, , and the point B, is between

the points 4, and B, . The points are assumed to be positioned along the curves I'; and I, , respectively.

Also, it is assumed that 'y \I'_ = £, T'yNT", = £ and the distance between I'j, I'_,T", is greater than

some positive number ¢ = const > 0.
Let us introduce the notation: u~ (I'y)=T_, wu*(Ty)=T,, where u (-) and u"(-) are the

diffeomorphisms between I'y and I'_, I'j and I, .

Fig. Domain D
In the domain D we consider the problem: findin D a continuous function u (x, y) ,
u (x,y), if (x,y)eD",

u(x,y)=qug(x,y), if (x,y)ely,
u*(x,y), if (x.y)eD",

which satisfies the equations
Lu =f", if(x,y)eD_, (D
L'u™ =f*, if(x,y)eDJr, )
where L~ and L' are the second order linear uniformly elliptic operators, /" and f* are given, sufficiently

smooth functions in D™ and D", respectively.

The function u (x, y) also satisfies the boundary conditions
u- (x,y)=go_ (x,y), if(x,y)el"], 3)

u+(x,y)=go+(x,y), lf(xsy)erb (4)
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the nonlocal contact conditions

u (L) =u"(Ty), ®)
u (To)=u(To) =y u (T, )+y u (T_)+ey(Ty). ©)
and the coordination conditions
u(By) =y u(B.)+r u(B.)+¢(By): @
u(Ay) =y u(Ad,)+y u(A )+ (4). ®)

where y~ =const >0, y* =const>0, ¢),¢ and ¢" are known continuous functions.

Assume that the following conditions are satisfied:

I. f~, f* are functions such that for any continuous function ¢ and @ " in the domains D~ and D" a

unique regular solution of the problems exists

Boof (el Iveg (sp)edh
_ and
v =0, (xy)el Ul vi=g", (xy)el,uly;

II. If we have the iteration process

L_V_(k)zf_g (xay)ED_! L+V+(k)=f+g (xay)ED;s
_ __ d
v® =50, (xy)erury 0 g0 (xy)eT, LT,

where 1=, p** are the prescribed functions, @** uniformly tends to $*, then we have

* =1 +(k) C . .
v (X, y ) = kfgo V", which is the regular solution of the problems

Lv =f, (x,y)eD_, L'vt = £+, (x,y)eD:',
and

v =0, (xy)el Ul vi=g", (xy)el,uTl,,

this is the generalized Harnak’s first theorem [19-21].
III. Assume that the functions u* (x, y) are solutions of the equations
Lu =0, (x,y)eD ,L'u"=0, (x,y)eD",
Schwarz’ Lemma is valid for them [18-20].
IV. y" =const >0,y =const >0, y +y* <1.
V. L and L' are operators such that the extremum principle [19-22] holds for regular solutions of the
equations v~ =0 in D™ and L'v' =0 in D’+.
3. Uniqueness of solution of the problem (1)-(8). The following theorem is true

Theorem 1. Ifthe regular solution of the problem (1)-(8) exists and conditions IV, V are fulfilled, then the

solution is unique.

Proof. Suppose that the problem (1)-(8) has two solutions: v(x, y) and w(x, y) . Then for the function

z(x,y) =v(x,y)—w(x,y) we have the following problem:
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Lz =0, if (x,y) eD”, ()

L'z =0, if (x,y) e D", (10)

Z_L_I =0’Z+ N =0’ (11)
z2(Ty)=z"(Ty)=r"z" (T, )+y z (T_), (12)

From equality (9)-(12) it follows that

max|z(ro )| <y’ max‘z+ (r,)

+y max‘z‘ (F_ )‘ .
Taking into account the condition y~ +y* <1, we obtain

max|z(ro )| < max‘z+ (T,)

or max |Z(FO )| < max ‘z‘ (F_ )‘ .
This means that the function z does not attain a maximum on I';), but according to condition V it attains
amaximum on I, or I, . Taking condition (11) into account, we easily obtain z =0, i.e., the solution of the

problem (1)-(8) is unique.
4. Existence of the solution of the problem (1)-(8). We consider the following iteration process:

L (u_)(k) =/, if (x,y)eD", (13)

r (u+)(k) —f*. if (vny)eD", (14)

()" =9, if (ny)er. (15)

()" =9, i (vy)elas (16)

u® (Ty) =y u S (0, )+ 7u (0 )44 () (17)

1) D .
where £ =0,1,2,... and (u") (T_)=0, (u*) (F,)=0,T, =p"(Ty), T_=u (T,).

Denote
()" =50 (1) = 220 () =* (0),

then for the function z(x, y) we obtain the problem

L (z_)(k) =0, if(x,y)eD_, (18)
L (z+ )(k) =0, if (x,y) eD", (19)
) . (k) .
(z ) =0, lf(x,y)el“],(f) =0, zf(x,y)el"z, (20)
and the nonlocal contact condition
()" =0, i (vy)ern, @1

Let L_and L, bethe elliptic operators, for which condition III is true. Then from (18)-(21) we get
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max
r

<¢" max z(k)‘

Iy

)" )"

where ¢ =const, 0<q* <1, q =const, 0<q <1 (g"and ¢ are the coefficients contained in

or max < g max z(k)‘
r_ Ty ’

+

Schwarz’ lemma).

If we use the nonlocal contact condition (21), then we have
max ‘z(k) (T )‘ < [;/+q+ +y q } max ‘z(k_]) (Ty )‘
or
max‘z(k) (FO )‘ < Qmax‘z(k_]) (FO )‘ , (22)

where

O=y'q"+rq -
Taking condition (4) into account, we obtain 0 < Q <1. This implies that

lim 2 () =0,

Ifthe solution of the problem (1)-(8) exists, then by the maximum principle we obtain
(k) = _olok
mﬁeix‘u (x,y) u (x,y)‘ O(Q )’

max
D

+

ut® (x,y)—u+ (x,y)‘ = O(Qk)

b

and, accordingly,
mgx‘u(k) (x, y) —u(x,y)‘ = O(Qk ) .

Thereby we proved the following theorem.

Theorem 2. Ifthe solution of problem (1)-(8) exists and condition I1I is fulfilled, then the iteration process
(13)-(17) converges to this solution at the rate of an infinitely decreasing geometric progression.

Theorem 3. If conditions I-V are satisfied, then there exists a regular solution of problem (1) - (8).

Let us now prove the existence of a regular solution of the problem (1)-(8). We introduce the notation

e® (x,y)=u" (x,»)-u*" (x,») . Then for the function £ we obtain the problem

Le®=0, if (x,y)eD,

L's*® =0, if (x,y)eD",

e ®=0, if (x,y)el,, e ® =0, if (x.y)el,,
e®(Ty)=&*® () =y ™D (r, )4y e ¢ (1),
where £ =0,1,2,... and (&~ )(_]) (r_)=o, (" )(_]) (T,)=0.
Then, analogously to (22), we obtain the estimate
max|z®) (I )| < @max|e“ ™ (1), 0<0<1,

or

u® (x,y) —y* D (x,y) =0, if k> and (x,y) el,.
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This means that the sequence {u(k) (x, y)} converges uniformly on I, . Then for the domains D~ and D*

we obtain the sequence, which satisfies equations (13), (14) and equalities (15)-(17). From this and condition
IIT we conclude that the limit function is the regular solution of problem (1)-(8):

; (k) _
tim u® (x, ) =u(x,).

We have thereby proved that by using the iteration algorithm the solution of a nonclassical contact problem
is reduced to the solution of the sequence of classical Dirichlet problems..

Remark. If y~ +7" <1 and conditions I, Il and V are satisfied, then it is obvious that Theorems 2 and 3

are valid in that case, too.
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