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ABSTRACT. A nonlocal contact boundary problem for two-dimensional linear elliptic equations is
stated and investigated. The uniqueness of the solution is proved. The iteration process is constructed,
which allows one not only to prove the existence of a regular solution of the problem, but also to develop
an approximate algorithm of its solution. The solution of a nonlocal contact problem is reduced to the
solution of classical boundary value problems, in particular to the solution of Dirichlet problems.
© 2014 Bull. Georg. Natl. Acad. Sci.
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1. Introduction. The history of investigation of nonlocal boundary value problems began in the 20th
century [1,2]. The publication of [3, 4] gave impetus to numerous studies in this direction. The results
obtained in these works were generalized and refined from the standpoints of theory and application [5-19].

In the last two decades, extensive studies of nonlocal initial-boundary and boundary value problems were
carried out, general theoretical fundamental principles of analysis were formulated, methods were developed
for the numerical solution of problems and for the construction of mathematical models of concrete problems
in physics, ecology, biology, economics and other areas.

In the present paper, the boundary value problem with nonlocal contact conditions for linear elliptic
equations of the second order is stated and investigated in two-dimensional domains. The iteration process
is constructed, which allows one to reduce the solution of the initial problem to the solution of a sequence of
classical Dirichlet problems. It is obvious that the investigation of nonlocal contact problems is an  important
direction of applied and computational mathematics.

2. Statement of the Problem.  Let us consider the bounded domain D in 2R with piecewise smooth

boundary  . We choose two simple points 0A , 0B  [18]  on  and assume that at these points the tangent

to   exists. Further, we draw, in  D  the simple smooth curve 0 , connecting 0A  and 0B . It is assumed, that
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the curve 0  has the tangents at 0A  and 0B , not coinciding  with the tangents of the contour   in the same

points. It is obvious that 0  divides D into two parts (domains) D- and D+ , and the boundary    into two

curves 1  and 2  so that 0D D D    , 1 0D D     , 2 0D D      (Fig.1).

Assume that   is the diffeomorphic image of 0 , which lies in D- and adjoins 1  at the points A and

B ;   and 1  are not the tangents at the points A   and B .

Assume also that   is the diffeomorphic image of 0 , which lies in D+ and adjoins 2  at the  points A
and B ;   and 2 are not the tangents at the points A and B .

Assume further that the point A is between the points 0A and B , and the point B  is between the points

A  and 0B . AAlso assume that the point A  is between the points 0A  and B , and the point B  is between

the points A  and 0B . The points are assumed to be positioned along the curves 1  and 2 , respectively..

Also, it is assumed that 0     Æ,  0     Æ and the distance between 0 , ,     is greater than

some positive number 0const   .

Let us introduce the notation:    0 0,  
       , where      and      are the

diffeomorphisms between 0  and  , 0  and  .

In the domain D  we consider the problem: find in D  a continuous function  ,u x y ,
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which satisfies the equations

 , ,L u f if x y D     , (1)

 , ,L u f if x y D     , (2)

where L  and L  are the second order linear uniformly elliptic operators, f   and f   are given, sufficiently

smooth functions in D and D , respectively..

The function  ,u x y  also satisfies the boundary conditions

      1, , , , ,u x y x y if x y   (3)

      2, , , , ,u x y x y if x y   (4)

Fig. Domain D
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the nonlocal contact conditions

   0 0u u    , (5)

         0 0 0 0u u u u      
          , (6)

and the coordination conditions

       0 0 0 ,u B u B u B B   
    (7)

       0 0 0 ,u A u A u A A   
    (8)

where 0const    , 0const    , 0 ,   and   are known continuous functions.
Assume that the following conditions are satisfied:

I. f  , f   are functions such that for any continuous function    and    in the domains D  and D  a

unique regular solution of the problems exists
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II. If we have the iteration process
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where f  , ( )k   are the prescribed functions, ( )k  uniformly tends to   , then we have

  ( ), lim k
k

v x y v 


 , which is the regular solution of the problems
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this is the generalized Harnak’s first theorem [19-21].

III. Assume that the functions  ,u x y  are solutions of the equations

 0, ,L u x y D    ,  0, ,L u x y D    ,

Schwarz’ Lemma  is valid for them [18-20].

IV. 0const    , 0, 1.  const       

V. L  and L  are operators such that the extremum principle [19-22] holds for regular solutions of the

equations 0L v    in D  and 0L v    in 
,

D .
3. Uniqueness of solution of  the problem (1)-(8). The following theorem is true

Theorem 1. If the regular solution of  the problem (1)-(8) exists and conditions IV, V  are fulfilled, then the
solution is unique.

Proof. Suppose that the problem (1)-(8) has two solutions:  ,v x y  and  ,w x y . Then for the function

     , , ,z x y v x y w x y   we have the following problem:
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 0, ,L z if x y D    , (9)

 0, ,L z if x y D    , (10)

1
0z


 ,

2
0z


 , (11)

       0 0z z z z     
        , (12)

From equality (9)-(12) it follows that

     0max max maxz z z    
      .

Taking into account the condition 1    , we obtain

       0 0max max max maxz z or z z 
       .

This means that the function z does not attain a maximum on 0 , but according to condition V it attains

a maximum on 1  or 2 . Taking condition (11) into account, we  easily obtain 0z  , i.e., the solution of  the

problem (1)-(8) is unique.
4. Existence of the solution of the problem (1)-(8). We consider the following  iteration process:
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, ,
k

L u f if x y D     , (13)
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1, , ,
k
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( )

2, , ,
k

u if x y   (16)

       ( 1) ( 1)( )
0 0 0

k kku u u      
        , (17)

where 0,1,2,k    and     
( 1)

0u
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Denote
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( ) ( ) ( ), , , ,
k k kz z x y z x y z x y     

then for the function  ,z x y  we obtain the problem

   
( )

0, ,
k

L z if x y D    , (18)

   
( )

0, ,
k

L z if x y D    , (19)

   
( )

10, , ,
k

z if x y      
( )

20, , ,
k

z if x y   (20)

and the nonlocal contact condition

   
( )

20, , ,
k

z if x y   (21)

Let L  and L  be the elliptic operators, for which  condition III is true. Then from (18)-(21) we get
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   
0 0

( ) ( )( ) ( )max max max max
k kk kz q z or z q z

 

   

   
  ,

where , 0 1, , 0 1q const q q const q          ( q and q  are the coefficients contained in

Schwarz’ lemma).
If we use the nonlocal contact condition (21), then we have

   ( ) ( 1)
0 0max maxk kz q q z          

or

   ( ) ( 1)
0 0max maxk kz Q z    , (22)

where

Q q q      .

Taking  condition (4) into account, we obtain 0 1Q  . This implies  that

 ( )
0lim 0k

k
z


  .

If the solution of the problem (1)-(8) exists, then by the maximum principle we obtain

     ( )max , ,k k

D
u x y u x y O Q



   ,

     ( )max , ,k k

D
u x y u x y O Q



   ,

and, accordingly,

     ( )max , ,k k
D

u x y u x y O Q  .

Thereby we proved the following theorem.
Theorem 2. If the solution of problem (1)-(8) exists and condition III is fulfilled, then the iteration process

(13)-(17) converges to this solution at the rate of an infinitely decreasing  geometric progression.
Theorem 3. If conditions I-V are satisfied, then there exists a  regular solution of problem (1) - (8).

       Let us now prove the existence of a regular solution of the problem (1)-(8). We introduce the notation

     ( ) ( ) ( 1), , ,k k kx y u x y u x y   . Then for the function ( )k  we obtain the problem

 ( ) 0, ,kL if x y D    ,

 ( ) 0, ,kL if x y D    ,

 ( )
10, , ,k if x y     ( )

20, , ,k if x y   

       ( ) ( ) ( 1) ( 1)
0 0

k k k k           
        ,

where 0,1, 2,k    and     
( 1)

0


  ,    
( 1)

0


  .

Then, analogously to (22), we obtain  the estimate

   ( ) ( 1)
0 0max max , 0 1k kQ Q       ,

or

     ( ) ( 1)
0, , 0, ,k ku x y u x y if k and x y    .
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This means that the sequence   ( ) ,ku x y  converges uniformly on 0 . Then for the domains D- and  D+

we obtain the sequence, which satisfies equations (13), (14) and equalities (15)-(17). From this and condition
III we conclude that the limit function is the regular solution of  problem (1)-(8):

   ( )lim , ,k

k
u x y u x y


 .

We have thereby proved that by using the iteration algorithm the solution of a nonclassical contact problem
is reduced to the solution of the sequence of classical Dirichlet problems..

Remark. If 1     and conditions I, II and V are satisfied, then it is obvious that Theorems 2 and 3

are valid in that case, too.
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