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ABSTRACT. The limiting distribution of an integral square deviation between two kernel type
estimators of Bernoulli regression functions is established in the case of two independent samples. The
criterion of testing is constructed for both simple and composite hypotheses of equality of two Bernoulli
regression functions. The question of consistency is studied. The asymptotics of behavior of the power of
test is investigated for some close alternatives. © 2014 Bull. Georg. Natl. Acad. Sci.
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Let randon variables Y , i=1,2, take two values 1 and 0 with probabilities #; (succes) and 1-p,,

i =1,2 (failure), respectively. Assume that the probability of success p; is the function of an independent
variable x€[0,1],i.e. p, = p, (x)= IP{Y([) =1 x} (i=1,2) [1-3]. Let ¢,, j =1,...,n,bethe devision points

of the interval [0,1]:

Let further Y and Yl , i=1,...,n, be mutually independent random Bernoulli variables with

1 oeeesdy

IP’{ —l|t} (%) P{K(")=O|ti}=l—pk(z‘i),izl,...,n,k=1,2.Usingthesamples YV 2
and Y , ,Y? we want to test the hypothesis

H,: p, (x) =p, (x) = p(x), X e[(),l],
against the sequence of “close” alternatives of the form

H, :p(x)=p(x)+au (x)+o(a,), k=12,

where a, — 0 relevantly, u, (x) #u, (x), x€[0,1] and o(e,) uniformlyin x[0,1].
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The problem of comparing two Bernoulli regression functions arises in some applications, for example in
quantal biossays in pharmacology. There x denotes the dose of a drung and p (x) the probability of response

to the dose x.
We consider the criterion of testing the hypothesis H based on the statistic

=5 b, | [hu= o, (O] P00k =

Q,(x)

=%an7 [ {Pl”(x)—Pz”(x)} . O, () =[th,.(1-1)b,]. 7> 0,

Q,(x)
where

P (%)= Py (¥) P, (%),

K (x)is some distribution density and b, — 0 is a sequence of positive numbers, p,, (x) is the kernel

estimator of the regression function (see [4], [5]).
1. Assumptions and the Notation
We assume that a kernel K (x) > 0 is chosen so that it is a function of bounded variation and satisfies the

conditions: K (x)=K(-x), K(x)=0 for [x|>27>0, jK(x)dx =1. The class of such functions is de-

noted by H (7).

We also introduce the notation:
1 2
T:r(l) :_nbn j |:151n ('x)_ﬁZn(x)j| dx’
2 Q,(x)

l‘aln (X) = pin (X)—Ep (X), i= 13"'9”9

0, w.lu). )= [ 2x{52ae
Q,(r)

n n

%) = i 2 240 4 =d6)= 2P0 p )

n

2. Auxiliary Assertions
Lemma 1 [6]. Let K(x) € H(T) and p(x), Xe [0,1] , be a function of bounded variation. If nb, — o,

then

Lgge [ij [—yb‘ffjp% (1)=

nb, 5

1 w| x—u .
e

n 0 n

<
N\
<
S
NS
N
=
]
—~
NS
N—
.
N
+
Q
VR
5
—
=
N—
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uniformly in x,y e[O,l] , Where v, € NU{O}, i=1,2,3.
Lemma 2. Let K(x) € H(T) , p(x) eC [0,1] and u, (x) , U, (x) be continuous functions on [0, 1] f

b"* — 0, then for the hypothesis H,,

n-n

nb? — o and o

1
b'c >o’(p)= 2j P’ (x)(l —p(x))2 dx j K; (x)dx )
0 ‘X‘SZT
and
_ _ 1
b, (A,-A(p))=0(b")+0(a,b, 1/2)+0[WJ’ Q)
where

A, =ET", A(p)=

n 2

O —

p(x)(l—p(x))dx I K’ (u)du,

<z
K, =K*K, *is the convolution operator.

Proof. We have

1 (1 1L
e e RO IPACY )

where

d, =2p(t,)(1-p())+0(a,), k=12, @)
uniformlyin ¢, €[0,1].

It can be easily established that

2
_ ) P -t 1
b’7l|A2(n)|=En 2b’7321di2[ J;) Kz[xb szxJ SC’IE‘FCZ%. (5)
= Q,(r n

From the definition of O, and (4) we obtain

. . -1
Further, using Lemma 1 and also taking into account that p(x)eC'[0,1] and {xb_’bi} >[-7,7] for

allxeQ, (1), it is easy to show that
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Thus

b4, (n)—2[ p* (x)(1- p(x)) dx [ K (x)ax. ©)

0 ‘X‘SZT
From (5) and (6) follows statement (1).
Further, using the above-mentioned method, we can write

A, =ET”<‘>=%(nbn)“ j iKz (xb;t’)d(rl.)dp

2,

1
—
o_,@‘\x

>
)
—
<
~
S
—_
=

|

S
<
N
—_
—
|
S
—_
=

|

S
<
~—
~—
S
S
+
S
VR

o]
K
a3
@‘*
Bl

='(i; P(x)(l—p(x))dxj K2(x)dx+0(b”)+O(a”)+0£LJ.

<z

Thus

b, (A, -A(p))= O(b;/2)+ O(anb;”z)+ 0(%}

n

The lemma is proved.
3. Asymptotical Normality of the Statistic 7,

We have the following assertion.

Theorem 1. Let K(x)eH(r) and p(x).u (x),u,(x)eC'[0,1]. If nb? > o, a,b -0 and
nb*a’ —c,, 0<c, <o, then for the hypothesis H,,
b,"*(T,=A(p))o™" (p)—=>N(a.1),
where A(p) and o (p) are defined in Lemma 2 and —_<_ denotes convergence in distribution and

N (a,l) is a random variable having the standard normal distribution with parameters (a,l) ,

a=—20 ;!‘(ul (x)—u, (x))2 dx

20(p)
Proof. We have

where
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L(”‘) =nb, j [[91” (x)- s, (x)][EpM (x)- Ep,, (x)] dx,

Q,(r)

= %nb” j [Epln (x)- Ep,, (x)]2 dx.

Q,(r)

By Lemma 1, it is clear that

Q,(7)

n

e

1 1
2y _ 2 g2 2 1
bl7 LU - 2 nb”l a”l j {b J‘

:|D[ 7,7] forall xe Q, (7), from (7) we find

u (t)}dt+0($}}z dx.

2
— 1 0 1
b’71/zLE7z> =Enbr],/2a: j {J' K(t)(ul (x—b,,l‘)_uz(X—b,,l‘))dt+0[n—bnﬂ dx .

Q,(7)

-7

Further, since u, (x),u, (x) € C'[0,1], from (8) we have

1/2L

Now, we show that b”'”zLS) — 2 50. Wehave

1
—1/27(2) _
bn Ln -

Q,

__nbl/z J‘ p2n

It is clear that

1
el

(7)

Epl

S [ (5)(Ep (+)

dr.

EpZn )dx -

— Epy, (x))dv =10 + 1.

E[10]< (E(Ifﬁ)2 )“2 -

Q,(7)

=%nb,l,/2 {E( j P (x)(Ep,, (x) - Ep,, (x))dx

5 (7)

Q, (‘L’) =Q, (‘L’)XQ” (‘L’)

It is easily verified that
1

2 1/2
I] 4

X[Qj COV(pln (xl )’pln (xz ))(Epln (‘xl )_ EpZn (‘xl ))(Ep]n (xz )_ EpZn (xz ))dxldxz

COV(pl” (x), pu (x, )) = (nb,

and by Lemma 2 we can now write
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cov(p,, (%), p (%)) =

- n‘bnzj;K[x‘b_qu[xzb_ujpl (u)(1-p, (u))du+0(( : ; J

s s nb

n

Thus,

1 X —u X, —u 1 8
)[nbz-([K[—b JK[ p Jpl(u)(l—pl(u))dw(nb )2]

n n

1/2
x (Epln (xl ) - Ep2n (xl ))(Epln (xz ) - Ep2r/ (xz ))dxldxz <

1/2 2
nb'“a
1/2 _ n n
<cnb/ ‘o, =c; —a —0,
n n

since, by condition nb*a’ —¢,, 0<¢, <o and

'nbl/zaz
Jna,= T T
So, 1) —0. Analogously we can show that /') — 0.
Hence
L —250. (11)

Further, to prove the theorem it remains to show

M _
TH—AHL)N(OJ). (12)
o-l‘l

Since the proof of (12) is similar to that of Theorem 1 from [7], we omit it.

Using the representation 7 = 7" + 1" + 1), Lemma 2, (9), (11) and (12), we find that

n

o E0) o oo )

The theorem is proved.

The conditions of Theorem 1 for 5, and «a, are fulfilled if we assume b, =h,n~° and a, = a;n”"***"* for
0<o6<1/2.
Corollary. Let K(u) € H(T) and p(x) eC' [0,1] Af nb? — oo, then for the hypothesis H,
b, (T, =A(p))e! (p) == N (0.1). 13

4. Application of the Statistic 7, for the Hypothesis Testing

As an important application of the result of the corollary, let us construct the criterion of testing the simple
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hypothesis H,: p, (x) =p, (x) = p(x) (this is the case with given p(x) ); the critical domain is defined by
the inequality

T,>d, (a) =A(p)+b,]l/2c7(p)la,

and from Theorem 1 we establish that the local behavior of the power ]P’H] (T w=d, (a)) is as follows
n

Py

(20, a))—1-0] 2, -2

o(p)

1n

where

1
=C—OI dx u=(u1,u2)
2 )
0
®(2,)=1-a, ®(A) isastandard normal distribution.
Note that in (13) the statistics 7,, is normalized by the values A ( p) and o ( p) which depend on p (x) .

If p(x) is not defined by hypothesis, then the parameters A( p) and o ( p) should be replaced respec-
tively by

and we show that

b,"* (A, -A(p))—>0, 6;—L507(p). (14)

. 1 . .
Let us prove (14). Since p, (x) =1 +O(nb j uniformlyin x € Q, (7) and

n

Din (x)|£c4, xel0.1],i=1,2,
we obtain

b—]/2

~A(p)| <
sedi” I()(E(Pln(x)—Epm(x))z)l/zd“I (£ () Epa, () | e+
nle Qr(0)

+bn_]/2 I |Ep]n (x)—p(x)|dx+b:l_2 I |Ep2n(x)—p(x)|dx.

Q,(x) Q, (1)

Further, using Lemma 1 and and also taking into account that p(x)e C' [0,1] and {xb__l’bi} o [-z,7] for

all xeQ, (7), it is easy to see that
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bn—]/ZE

A, ~A(p) =O(J?1bn ]+0(b,‘/2)+0(nb13/2 j

Hence b, " (An —A(p))L)O . Analogously, it can be shown that 67 —— o (p).
Theorem 2. Let K(x) € H(T) and p, (x) =p, (x) eC' [0,1] Af nb? — oo, then for n — o
b, (1, -A,)6,' —>N(0,1).

Proof. 1t follows from (13) and (14).
Theorem 2 enables us to construct an asymptotical criterion of testing the composite hypothesis

Hy: p (x) =p, (x) , X€E [0, 1] . The critical domain for testing this hypothesis is defined by the inequality
T,2d,(a)=A,+b,"6,4,, ®(1,)=1-a. (15)
Theorem 3. Let K (x)e H(7), p,(x),p,(x)e C'[0,1].If nb? — oo, then for n — oo
Py, (Tn >d, (a))—)l,
Here the alternative hypothesis H, is any pair (p] (x),pz (x)) 2 (X),p2 (x) ec! [0,1] , 0<p, (x) <1,

i=1,2, such that p, (x) # Dy (x) on the set of positive measure.
Proof. 1t is similar to the proof of Theorem 3 from [7].
2j-1

Remark. Let ¢, be the division points of the interval [0, 1] which are chosen so that H (tf) = L
: n

X
j=1,...,n, where H(x) = jh(u)du , h(u) is some known continuous distribution density on [0, 1] .In
0

this case, by a similar reasoning to the above one we can generalize the results obtained in this paper.
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