LOISGM3IRML  33G603®IBSMS IBMBEIRO  535RKIJFO0L  3™MH3I, &. 8, Nel, 2014
BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol 8, no. 1, 2014

Physics

Classical Motion of a Relativistic Test Particle in the
Static Cylindrically Symmetric Metric

Morteza Yavari

Department of Physics, Islamic Azad University, Kashan Branch, Kashan, Iran

(Presented by Academy Member Anzor Khelashvili)

ABSTRACT. In the paper, the gravitoelectric and gravitomagnetic fields are discussed in the threading
formalism. The motion of a relativistic test particle in the static cylindrically symmetric metric is
studied by applying the Hamilton-Jacobi method. In threading formalism the gravitoelectromagnetic
force in this spacetime is also calculated. © 2014 Bull. Georg. Natl. Acad. Sci.
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1. Introduction

The slicing and threading points of view today are introduced, respectively, by Misner, Thorne and
Wheeler [1] in 1973 and Landau and Lifshitz [2] in 1975. Both points of view can be traced back when the
Landau and Lifshitz [3] in 1941 introduced the threading point of view splitting of the spacetime metric. After
them, Lichnerowicz [4] introduced the beginnings of slicing point of view. The slicing point of view is
commonly referred as 3+1 or ADM formalism and also term 1+3 formalism has been suggested for the
threading point of view. For more details about these formalisms, see reference [5]. In threading point of view,
splitting of spacetime introduced by a family of timelike congruences with unit tangent vector field may be
interpreted as the world-lines of a family of observers, and it defines a local time direction plus a local space

through its orthogonal subspace in the tangent space. Let (M, g,43) be a 4-dimensional manifold of a

stationary spacetime, while the Greek indices run from 0 to 3 while the Latin indices take the values 1 to 3. We

. . . . - M . .
can construct a 3-dimensional orbit manifold as M = G with projected metric tensor 7; by the smooth map

2:M — M where Z(p) denotes the orbit of the timelike Killing vector % atthepoint peM andGis 1-

dimensional group of transformations generated by timelike Killing vector of the spacetime under considera-
tion, [5,6]. The threading decomposition leads to the following line element [2,6,7]:

Bull. Georg. Natl. Acad. Sci., vol. 8, no. 1, 2014



52 Morteza Yavari

2 _ a B _ i\? i
ds” =g,pdx"dx —h(dt—gl-dx) —yydxdx’, (D

where y; =—g; +hg;g;,inwhich g; = —% and & = g, . In a spacetime with the time dependent metric (1),

the gravitoelectromagnetic force acting on a relativistic test particle whose mass m due to time dependent
gravitoelectromagnetic fields as measured by threading observers is described by the following equation, we
use the gravitational units with c=1 [8,9]:
. * d*
podp_ m
dt 1- %2

{*E+*v><*B+*M } )

* i i i
; m v * 2 PR A . i v . ; dx
where “p’ = ——— such that "v" =y; V' v/ in which V' = with v/ = and starry

1-*? W di

*d *a . i *a 1 a
. . . . . . — + i 6 — .
total derivative with respect to time is defined as oo v 0; where o _\/Z o and

. d &k N
W= 0;=0,+g; e We recall that the vector C= A xB have the components as C' = g—AjBk in which

Jr

y =det(y;) and 3-dimensional Levi-Civita tensor Eijk is antisymmetric in any exchange of indices while

123
gyn=¢&" =1 [2]
The gravitoelectromagnetic refers to a set of analogies between Maxwell equations and a reformulation of the

Einstein field equations in general relativity [10,11].
In equation (2), the last term is defined as ™' = —( */lji-k W+ ZDZ ) *vk, where the 3-dimensional starry
Christoffel symbols are defined with the following form

a7 1 il
j =57 (7jz*k +7/kl*j_7/jk*l)f ©)

and deformation rates of the reference frame with respect to the observer are represented by tensors

=l oy and DY =—l oy

i35 . Finally, the time dependent gravitoelectromagnetic fields are defined in
t

terms of gravoelectric potential ® = In+/4 and the gravomagnetic vector potential g =( 2,25, g3) as fol-

lows
* * ag * ag
E=-"Vvo-2 ‘g -0, -2
ot ot @)
‘B, ‘B gk
- = vxg: = == 8kxi1>
N NG zh ©)

ik

£
2

7

where curl of an arbitrary vector in a 3-space with metric 7;; is defined by ( "V x A) Ajr while the

symbol [ ] represents the anticommutation over indices.

Bull. Georg. Natl. Acad. Sci., vol. 8, no. 1, 2014



Classical Motion of a Relativistic Test Particle... 53

2. Classical motion of a relativistic test particle in the cylindrically symmetric
metric

2.1. Calculation of the trajectory

We start with a static metric in the cylindrical coordinates (¢,7,¢,z) given by, [12]:

ds2 _ eZk_zudtz _ eZk—Zu dr2 _ er—Zu d¢2 _ eZu d22 6)
where k, u and w are unknown functions of » only. At first, we determine the trajectory of a particle of mass m

moving in this spacetime by using the Hamilton-Jacobi equation [13-15]. Therefore, this equation is of the

form
2 2 2k 2 2
(@j _(5_Sj S e I ) )
ot or w? | 0¢ 0z
We now use the method of separation of variables for the Hamilton-Jacobi function as
S(t,r,¢,z) =—FEt+&(r)+ag + bz, ®)

where E, a and b are arbitrary constants and can be identified respectively as energy and angular momentum
of test particle along ¢ and z-directions. Next, with substituting the relation (8) in the Hamilton-Jacobi

equation, the unknown function £ is given by

fzejVEz—leder, ©)

here 4 =mPe 24 +p2e ™ & (1)2 and & = =1 stands for the sign changing whenever r passes through a
w

zero of the integrand in the equation (9). The equations for the trajectory can be obtained by considering the
following conditions [13-15]:

oS oS oS
—— =constant, ——=constant, ——=constant, (10)
OF oa ob

without any loss of generality one can consider the above constants to be zero. Hence, the equations (10)
respectively convert to the following relations

t = EEJ._dr b} (11)
VE? - 2e%k
eder
¢= gaj 2 2 2k (12)
WwANE" - Ae
eZk_4udr

z:gbj—zjijz??. (13)

To continue our analysis, we need to calculate the metric coefficients. To do this, we solve the Einstein field
equations and so, we lead to the following equations

K+ ') =0, (14)
W —wk'+wu')? =0, (15)
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wk'—w(u')* =0, (16)

W+ wk" = 2wu" = 2w'u' + w(u')? =0, (17)

the overhead prime indicate differentiation with respect to ». By comparing the equations (15) and (16), one

can find

w=cr+c,, (18)

in which ¢; are integration constants. By substituting the last relation into field equations, we can conclude
w

k=c, ln(c—) +¢y, (19)
1

and two solutions for u become as follows

k
U = g\/gln(w)+c5 & u, =5 (20)

Next, we will determine the trajectory of particle for two following cases:
Case (1): u =y,
First, without loss of generality, we restrict our analysis to the special case c; =1. In this case, by

considering the equations (11-13) and some tedious calculations, the trajectory of particle is obtained as

follows

-1

igbc]2 igbc]2
z - z

2 2 U 2 u
_ L
\/0146 4c4¢2 +(,L2aj __ e + e (21)

w ) P B

(e 4u

oL |a (REY _eVL
E L a

- -2
where L = c,2 E* - a2e2c4 —mzezc4 2¢5 , U= b7 and ;= «J—1. Therefore, we can conclude

p=——10 (22)

2
L E
L&l tz{ﬂ_J o

qk L o’ @3)
2.2 2.3
iz uE + [P E* (1-1) -0
== 7 - 2.3, 272 a (24)
be; 2ULNPL + P B
Also, from the equation (11), the radial velocity of particle has the following expression
dr _eJE*-2e* @)
dt E '
. . . . dr .
The turning points of the trajectory are given by = =0. As a consequence, the potential curves are
E =2~ (26)
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4a? + mze_zc5 e4a® + mze_zc5
We note that if — <EZ , then there are no bound states and the
a &1

particle cannot be trapped by the extended object with the static cylindrically symmetric geometry. But if

Cy 2 2 —2¢4

e4Na' +me

| E |> , then there are two real extremals at
G

H )
r=t -, 27)
aN L ¢

So, the trajectory of particle is bounded, i.e. particle can be trapped.
Case 2): u=u,

Similarly, we consider c; =1. In this case, after some work, we find that

_C
t - 2¢e 2 -
rh cie 24 § - —ge—\/(E2 —bH)cle 4 —ateh —mPew. (28)
a 1

2
m c

S

Furthermore, we can easily see that the trapping of particle in this case is not possible.

2.2. Calculation of the gravitoelectromagnetic force

At first, from the equations (11-13), we can deduce

gt KE2 _qe i,
1| aet™ k
VR i=2, (29)
pek=3u i=3.
With applying this relation, after simplifying, we lead to
a— S (30)

J1-%2

In the next step, all nonzero components of starry Christoffel symbols are calculated as

*)L]]] — k'—u',
=z<AQ]2 — (MIWZ _ le)e—Zk’

* ' du—2k
/’l’.‘:3 =—u'e™ s 31)

*1122 — _u/ +K’
w
*1133 =u',
in our notation (r,¢,z) = (1,2,3). At this stage, from the equations (29-31) and using this fact that all compo-

nents of D;; are zero, we can derive the following expressions
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ok 1 u—k 2 2u !
ap e {(u'—k')(Z E22u=2k_,2) ae (k’—2u’+i)+b2e_2uk'}, (32)
dt E w2 w
vl L k(B> 2u—2k _ 2)+a2€2u k-2 ,+1' Th2e 22Uy
= 2 (u (E<e m —W2 u w) e s (33)
d'pt . M = Das(wu' —w')e2 B — ek (34)
dt W3E2 ?
d'p . M = 2beu'e PN E? — 2K (35)
dt E? '
Further, we can verify that all components of gravitoelectromagnetic fields are vanish except
E, =u'-k' (36)
By considering the equations (30-36) and some calculations, we finally achieve to
"F=0. @7

3. Conclusion

The motion of relativistic test particles in the static cylindrically symmetric metric have been investigated.
We proved that the particles can be trapped by this gravitational field. Also, it was shown that the

gravitoelectromagnetic force acting on particles in this spacetime vanished.
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