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ABSTRACT. In the present paper the problem of statistical estimation of the nonlinear integral
functional of a regression function is discussed. For the regression function and its derivatives well
known Priestley-Chao estimator are taken. The problem is naturally considered in the Sobolev space. As
an estimator for this function the plug-in estimatoris proposed. Theorems about consistency and
asymptotically normality are proved. The order of the convergence is determined. The general methodology
is used for some special cases. The estimation problem of Fisher’s information and Shannon entropy for
Priestley-Chao’s regression function is solved. © 2014 Bull. Georg. Natl. Acad. Sci.
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In the present paper we investigate the integral functional of a regression function and its derivatives. In
our investigation we use the Priestley-Chao Regression Function introduced and studied in [1-3].

The study of functionals of a probability distribution density or of a regression function and its deriva-
tives is an interesting task and attracts an active interest of the part researchers [2-8]. Detailed studies of
functionals of a probability distribution density function and its derivatives are presented [4-7]. Investiga-
tions of functionals of a regression function and its derivatives are more modest [2,3].

Let a(¢) denote the regression function, then we may consider, say, the particular cases:

B 0 , B 0 (a,(t))Z
I,(a)= I A(0dt,  L(a)= I TR
Iy(a) = I (a(®)) dt, I(a)= I a(t)log a(t)dt,

Related problems were studied in the above-mentioned works [2,3]. Our approach in this paper is based
on the derivation of a representation theorem which we further use to obtain the results connected with

asymptotic properties, in particular with consistency and the central limit theorem. The statement of the
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problems and the discussion were inspired by [4].
Let us consider a regression model of the form:

Y(t)=a()+&(1) @)
where t €[0,1], (-) isnoise with Eg(t) =0, Eg’ 0= o2 <o, Y(t)isan observed random function, and
a(t) is an unknown regression function. Suppose that we have n numbers:

0<f<t,<..5¢,<1,
1 .
where each ¢, k =1,2,...,n depends on n and max; |tl- —tl-_]| = 0| — |. We have n observations:
n

Y(1,),Y (1), Y (1,).
The estimator of the unknown function a(f) was introduced by Priestley M. B. and Chao M. T. [1] and
defined by the expression:

a,,apiw[’lz—’f}-%-ﬂri), @)
i-1 n n

where {/,, n=1,2,...} is a sequence of positive numbers monotonically tending to zero. #(¢) is the function

with probability density properties. In [1] the estimator of the k-th derivative of the regression function

a® (¢) is introduced as formula:

h

n i= n

. 1 < =4 ) Gt
i=l n

forall k=0,1,2,...,m. It was assumed that 4° (r) = a, (1).

Let ¢ :R™* — R be a continuous bounded function. Consider an integral functional of the form:

0

1(a) = I o(t.a().a'0)....a™ @))d. @)

We have the selection (#;,Y;), i =1,2,...,n. This means that
Y =Y(@)=a(t)+e(,). o)
To estimate /(a) we use the plug-in estimator, i.e. consider the functional:

0

1(a,)= I o(£.4, 0., (0)....a" (1))

—o0

Representation Theorem

Our consideration is based on a representation theorem which will lead to the results we are interested in.
Let us list the conditions, which the considered variables are supposed to satisfy.

Conditions on a:

(al) The function a=a(t) is defined and continuous on [0, 1] and takes its values in the interval [-k,k];

(a2) a=a(f) has continuous derivatives up to order m inclusive;

(a3) Foranyi =0,1,2,...,m, a” (¢) takes its values in [-k,k] and a” (- e L, ([0,1]).
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Conditions on ¢, :

(¢1) Random values ¢, k=1,2,... are independent, bounded and equally distributed;
(£2) Eg, =0, Es{ =0° <0
For brevity, we will use notation for ¢ = ¢(x,x,,...,x,,) € Cb2 (Rm+2) function:

op %

— =@, i=0,1,...mand ———=¢;, i,7=0,L,...,m.

0Ox; o Ox;0x Pap- 17

Conditions on ¢:

(1) The function ¢ : R™? _ R is continuous, bounded, integrable and has bounded continuous de-

rivatives up to second order, inclusive, in some convex domain A, which contains the domain R x [-k,k]"*!;

(¢2) All first and second derivatives of the function ¢ are uniformly bounded in the domain 4 by a
constant C, > 0.
By this conditions for the function j we have for all i, j =0,1,...,m:
sup({| @i, ) [ (8580 8] 5ee058) 1 (55805815055, ) € A} < C(p. 6)
Conditions on I7:

) I W(t)dt =1;

(W2) Function W (¢t) has the compact support [-7,7] and W(-t) =W (r) =0,

(W3) W(¢t) has continuous derivatives up to order m > 1,

(W4) There exists a constant Cy, > 0, for which sup,p, | w® O I£Cy <0, i=0,1,...,m;
(W5)Forany i =0,1,....m, W® L/(-7,7]).

Conditions on /,, :

N \/max(| logh, |;loglogn)

n \/Zhno,5+m

Denote by a, () mathematical expectation g, (¢) :

. - (=t t—t,_ - 1=t ) t—t;_
an(t)=Ean(t)=E[iZ]W[h—j- ; '-Y(ti)J=ZW£h—J- . La(t,).

n n i=1 n n

(h —0,asn — oo,

Then we obtain

k Ny 1 O w6 =t
t)=E t=—-EW — | a).
a, (t)=Ea, (t) o P P a(t;)

n =l n n
Let us show that there also exist expressions /(a), I(a,) and I(a,) and they are finite.

Using the Taylor formula for any point (s,s,,s,,...,s,,) € A and some S’i € A we can write

[ @ 1(S,8058)5058,) =

m 1 m B B B
Zgo(i) (s,0,0,...,0)s, +52g0(i’j)(s,so,s] seees S )8 |-
=0 =0
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Accordingly, there exists a constant C such that

m m
2
[ @ 1(8,805815058,) <C E |'s; [+ E ['s; 7|
=0 =0

Hence it follows that for any bounded measurable functions f (¢), f(¢),..., f,,(¢) from L (R) we have

[ 1016 f0@ /1. £, 0t <o 0

And therefore I(a) exists.
The conditions which are imposed on the function ¥ ensure boundness and membership in L (R), then
condition (#4) and (6)-(7) imply the finiteness of both variables /(a,) and I(a,),forany ne N .
By the Taylor formula we can write
1(6,)~1(a,) =5, (h,) +R,, ®

where, forany 4, >0, S, (h,) isthe sum of independent random variables:

S, (h,) = fj% (1.0, ay0),..a) ) (a9 () - al (1)) d. ©)

i=0 ¢
Aremainder R, has the form:
m 1
R, =23 [ (B ) (40~ 0) (a8 () —a? (). (10)

2 i,j=0 0

Where [;m (¢) is a point on the straight line connecting the points
(6., (0, },(0),...a0" () and (£, @, (1), (0),.... ¢S (1)).
Let us estimate the remainder R, . Applying the standard procedure, from (7) and (10) we obtain:

i( (1)(1‘) a(l)(t)) (11)

i=0

R,

I/\

Co-

e

Let an denote the Sobolev space of functions having a square-integrable continuous and bounded

m (a2
second derivative with the norm ||g ||m = \/ Zi:O .Ug O )‘ dt and the scalar product

m |
(g1.22), \/Z [(e0-gd@)ar

i=0 ¢

Denote 7, (m) = ||én -a, ||j1 . Then we can write

|Rn| <C,r,(m). (12)

Assume

Uk=Uk<r>=W(’;”‘J-%{Y(rk)—a(rk)], k=12,m

n n
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wherea(t,) = EY(t,). Then

Sy, =iW[’;—”‘j~%-[Y(rk>—a(rk>]=dn(t)—an(n.
k=1 k=1 n

n
Therefore, r,(m) =

n
Q.U
k=1

Let us estimate the norm of one of the summands U, in (13) for each k=1,2,...,n. We obtain

(13)

2
m

1

m 1 5 1 (1')2
il, =[z [loeof dfj | S S - |

1
2
m

i=0 ¢ i=0 n

dt
h

L. w® [t;_tkjm [Y(t)—a(t)]

m 1
= (4 —t,)[Y (@) —at)] ZJ_
i=0 0

1
|€k|CW 1_h2m+2 2 1 1
_ : n <L =M, ~O 14
n [h3m+2 (1 _ hf) nh::’l+] nhm+] ( )

for sufficiently large L>0.

To estimate 7, (m) weuse the McDiarmid’s inequality, which we give here for convenience (for details see
9.
McDiarmid’s Inequality: Let H(t,t,,...,¢; ) be areal function such that for each k=1,2,...,n and somec,,
the supremum in ¢,,t,,...,t, ¢ of the difference
|H(ty by ooty byl ) = H e iy L )] S €
If X,,X,,...,X, are independent random variables taking values in the domain of the function

H(t,t,,...,t;) then for every e >0

2
P{H(X,, Xy, X)) = EH(X,, Xy X,) > £} < 2exp| ————

Let us apply McDiarmid’s inequality for the function

7
H(U,,U,,..U,) = U,

k=1

m

We have:
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|H(U]!U2’ Uz ]’U U1+]’ Un)_H(U]!U2’ Uz l’U U1+l’

z Uk+U z Uk+U

k=1,k#i k=1,k#i

<|u, +||Uy ||m <2M,,.

Andas ¢, wetake ¢, =2M,,, k=1,...,n, from (14), for any § > (0 we obtain:

252 25°
>0 p<2exp o207 =2exp| — J 5
" 4M? n-4M

m

n
2.V
k=1

m

n
~E|> U,
k=t k=l

252 2h2m+2 252 2h2m+2
=2exp —n—”2 =2exp —n—z" .
n-4L 2L

2L \/logn
\/;h;ln+]

We substitute here 6 =

and we have:

417 log nh*™+?
a2 12

_ J:Zexp(—Zlogn)=%.
n

>0 < 2exp(—

by the Borelli-Cantelli lemma, we write

0([—% J (15)

Using the Jensen’s inequality
2
n

2 n 2 m 1
{E J <E|YU,| =E ZI
m k=1 0

m k=1 i=0

C2 n m 1 1

SN

2i+2
n k=1 i=0 ¢ hn

n

dt <

W(l)( j e "l ;ltk“ 1Y () —a(t)]

k=1 n

Cp6%  1-him? x|

IA

E[Y(t)-a(t)] di <
logn
from (12), (13), (15) and (16) we conclude that R, = O W .
n n

Therefore the following statement is true.
Theorem 1.4ssume that conditions (al)-(a3), (€l)-(€3), (pl)-(p3), (W1)-(W5) and (hl)are fulfilled. Then

representation (8) is true and the remainder with probability 1 has the order

logn
R, = O(nhz"”z J (17)
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Consistency

In this section of the paper we use Theorem 1 to prove that the estimator /(a,) is consistent.

Theorem 2. Let the conditions of Theorem 1 be fulfilled. If the positive sequence (h,)

chosen so that

logn

2m+2
nh;,

—0, asn— o

then with probability 1 we have
I(a,) = I(a,).
Proof. By Theorem 1 and formula (8)
I(a,)-1(a,)=S,(h,)+R,,
where R, =o(1) and

S, (h,) = fiw@(r,an (0, (0),.-.a" ) (@ ) - af () ).

i=0 ¢

By condition (al):

{(t,an (O} (0).....a" (1)) 1 [0, 1]} < [0, 1]x [k, k"

This and condition (¢2) imply that there exists a constant C > 0, such that

sup{|gol-|(t,t0,t] sty ) (st nty) € [0, 1] %[k, ]! } <C,.

We can write:
ES,(h,)=0.

m 1
DS, (h,)=ES}(h,)<C} Y. I E[&ff) )—a? (z)]dt
i=0 ¢

2
dt

=B N t—t 1, —t
D kLR L BTV (4 ) —alt
Ly [ ) J 7 [Y(t,)—a(t,)]

n

m 1
SC;;I
i=0

n

2
X 1 1
SC;CVZV‘Sz'Z(fk—fk—l)z'(FJ ~C —0
pary

logn

2m+2
n

because —0 anddo S,(h,) >0 as n—> 0.

We can write

Ea® (1) = I W w)a® (0)(t - uh, )du + 0(%}.
n

—T n

Hence we make the following conclusions:

1
1) for conclusion (17), 7 tends to zero for any k=0, 1,...,m;
n n
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i) Ea® (1) > a®(t) as n > o0

Summarizing the above discussion, we ascertain that if » — o then
1 1
1a,) = [ 9(1.0,,0,0,a™ 0)dt > [ (1,00, a'0),...a ™ ©)) i = 1)
0 0

Since (a,)—1(a,) = o(1), we conclude that /(a,)—1(a,) — 0 a.e.The theorem is proved.

Central Limit Theorem

Using our representation theorem we can obtain the limit distribution property for the integral functional

1
1(a,)= Igo(t,ftn (0. (1), " (1)) .
0

Consider the difference
I(a,)-1(a,)=S,(h,)+R,, ®)

where for any /4, >0, S,(4,) is the sum of independent random variables

m 1
Suth) = 2" [0 (60,0, 0.0 0)) (a9 - (1)) . ©)

i=0 ¢

R, isaremainder having the form:

m 1
R, = %JZO ! 0 (B, 0) (@)~ )80~ (). (10)
Clearly,
ES,(h,)=0 and ER, >0 as n— o (23)
Moreover
m 1 2
E(S,(h)) =0*| > J' 010 (£, (0. ) (1), @™ () )t | 24)
i=0

and VarR, -0 as n > .

Using appropriate conditions, we have to prove that the variable Jn ({(a,)—1(a,)) is asymptotically
normal and calculate the limiting variance. For this, according to the theorem and formulas (8), (23) and (24),
we have to show the asymptotic normality of the variable \/;Sn (h,) - As follows from (10), in this case it
suffices to study this property for the variables:

m 1
1 at=t, ) t, —t,_ , .
d, = Y(tk)-zEIW()(h—kj-%-g% (r,an(t),an(t),...,af, )(t))dt 25)
i=0 "n g n n
It can be easily verified that
m 1
1 at=t, ) t, —t,_ , .
Ed, =a(t,)- zh_f I w® (h_kJ -%-% (r, a,(t),d,(?),....a. )(t))dt. (26)
i=0 "n ¢ n n
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Thus we consider the sequence of independent random variables:

full) =a(n,b)(Y () - a(t,)) = a(n, ke,

where

1
— o G| =0 | e —lee ' (m)
a(n,k)—;h—i- ! w [h—J hn 0 (£, (0. @} (0)....al (1)) .

. n
Let consider the sum S, (4,) = Zk:I a(n,k)e.
Let F , be the probability distribution function of'a random variable a(n,k)¢, and F, be the distribution

function of a random variable - &, . The Linderberg’s condition is written in the form V6 >0, lim L,(6) =0
n—>0

where

L,(5)= 522" JEP ,
k=1

here J(A) is the indicator function of the set A. It is easy to see that
1 .
L,(6) < —5max,c, szJ (|x| > oov(n, ]))ng (x)
c
where
|a(n, j)|

(2]

It remains to show that max,;., v(n, /) >0 as n — o . But since

v(n,j)=

1
maxc e, |a(n,j)| = O( J,

m+1
nh,,

we have

max, e, V(n, j) = 0[%}
n

Thus the Linderberg’s condition is fulfilled and we can conclude that the theorem is valid.

Theorem 3: Let the conditions of Theorem I be fulfilled. Then if h, — 0 and \/;hr’l”” > asn—w,

we have «/;(I(dn) -1(a, )) —, N(O, %), where

=t
r =0 -

m
i=0

2
U%) (t, a,(t),a, (t),...,af,m(x))de .

0
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Applications

1
Let us consider the integral functional 7, (a) = Io a’ (t)dt.

2
1
Then (t, xy,x,....x,,) = x2 _for x, €[~b,b] 5[k, k], b>0. Thus r* = 40> an(t)dt) :

And, using the conditions 4, — 0 and \/;h;”” — o0 as n— o, we have the convergence

n(1(a,)~1(a,)) =4 NO,r).
(a'()) X

1
For the functional 1, (a) = j 32t we obtain @t XgsXpseees Xy ) =~
0 a(t) X0

Then, assuming that ¢ €[0,1] = a(¢) €[a,b], b>a >0, we have

IVOPRY , 2 , , RN RVAT:
P =ot || (@) 200 || _ g2 [ €D 100401y~ 2D g g0y~ L. D) 1 (€O
o\ (a@®)” @) a(l) a(0) 2 (a@)” 2 (a(0))

For h, -0 and \/;hf — o0 as n — o, we have the convergence
Vi (1(@,)=1(a,)) =>4 N(O.r?).
Let us consider the functional Q(a)zji(a(t))s di, s>1. Then @(t,%,%,...x,)=xy, for
xy €[-b,b] o [-k,k], b> 0. Therefore
: 2
P =s’c? -{J.as_] (l)le .
0

And for the condition 4, — 0 and \/;hn — o0 as n — o ,we have the convergence

In(1(a,)~1(a,)) =, N(O,r).
Let us now take the functional /,(a) = j a(t)loga(t)dt. Then for some sufficiently large b > K >0, if

0<x, <b wehave p(t,xy,x,...,X,,) = @(xy) = x, log x,. Let us extend the definition of the function ¢ by

defining @(x)=0 for —p < x < p. Assume that ¢t €[0,1]= a(¢) €[a,b], b>a >0 and p > p. Then

1 2
. .Ua(t)(nloga(t))de .

0
And for the condition %, — 0 and \/;hn — o0 as n — oo, we have the convergence
In(1(a,)~1(a,)) =, N(O,).
Iterated Logarithm Law

Applying the well-known iterated logarithm law from Kuelb’s (paper [10]), we ascertain that the following
statement is true.
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Theorem 4. If the sequence h is chosen so that

R, =0( /loglogn}
n

\/;(I(&n)_l(an))

lim supt =7.

n—>00 \2loglogn

Indeed, it can be easily verified that
Vn (a(n, k)Y (1) - a(n,k)a(t,))

I(a,)-1
lim sup+ \/;( (,)~1(a,)) = lim sup* =7.

n—>00 \/2loglogn n—>o «2loglogn

then

3.)0)(73.)&0 30

3601&@9‘30—5&0)15 633631&001& gﬂsjeooh oﬁéaaﬁbg:raﬁo
%ﬁsjeoms.bg:)abols '3315.)1‘)36

Q. 014).)25083

3 dma‘)(ﬁmgols 50%001‘)-3‘)0)33‘)@0(}0[5 Z}‘)Jv)@‘)(ﬁm stmgw, mdogmlm,

6536»ddo aoEBOQmQOo Fmﬁa'lsoo'ls %nﬁﬂeoob 05(5366.)52'360 Lsbols ‘36‘)96‘3030 oﬁéwﬁogﬁﬁo
gﬁﬁﬂeomﬁéga%o]& B&o&o]&&odgﬁo '33(301336013 36m6Q330. »ngoo 6335)3130013 %nsﬂeoohom;io'ls [
dobo ﬁ)ﬁﬂmabﬂga&obmz;oh oQabaQoo 360B®Qo—ﬁomk GSmbomo '33(3.)1536330. .)3070.)6.) bﬂﬁabﬁo&)g
aosobogaao lsmBmQ;]aols '3315.)3.)3015 1503603'30. 5.)1‘)1535330 (B-asjeomsamols 'aagalsaaag 'aaam—

o%o%abagoo 3.%’. ,,Poldols '33(5.)13360. 5053353600 JQQQabanaolm [ ) .)13033@(')@0-360;(\) 6mds-
Qﬁt’)m&ﬂs o)amﬁaﬂa&o]b Boaoﬁmgoosmao. Q.)Qaasogo.) dﬁa&oa\)maob 603360. 'Bma.)n\m aam(")Q()d.)

a.)amaasabagoo 608Q35088 daﬁ)dm '3330)53:3013.50)3015. Oﬂ a&Qﬁam&OmOb 3601}6&0—50001) 63868150013
(8'85:]00015 %0’8860]} OS%M&)BOGO‘:]QO 05&%60QOB0 QO 'aasmso'ls 3666(’)300’[} '38(3‘)1383()15 36(‘76‘288\).
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