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ABSTRACT. In the present paper the problem of statistical estimation of the nonlinear integral
functional of a regression function is discussed. For the regression function and its derivatives well
known Priestley-Chao estimator are taken. The problem is naturally considered in the Sobolev space. As
an estimator for this function the plug-in estimatoris proposed. Theorems about consistency and
asymptotically normality are proved. The order of the convergence is determined. The general methodology
is used for some special cases. The estimation problem of Fisher’s information and Shannon entropy for
Priestley-Chao’s regression function is solved. © 2014 Bull. Georg. Natl. Acad. Sci.
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In the present paper we investigate the integral functional of a regression function and its derivatives. In
our investigation we use the Priestley-Chao Regression Function introduced and studied in [1-3].

The study of functionals of a probability distribution density or of a regression function and its deriva-
tives is an interesting task and attracts an active interest of the part researchers [2-8]. Detailed studies of
functionals of a probability distribution density function and its derivatives are presented [4-7]. Investiga-
tions of functionals of a regression function and its derivatives are more modest [2,3].

Let a(t) denote the regression function, then we may consider, say, the particular cases:
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 3 4( ) ( ) , ( ) ( ) log ( ) ,sI a a t dt I a a t a t dt
 

 

  
Related problems were studied in the above-mentioned works [2,3]. Our approach in this paper is based

on the derivation of a representation theorem which we further use to obtain the results connected with
asymptotic properties, in particular with consistency and the central limit theorem. The statement of the
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problems and the discussion were inspired by [4].
Let us consider a regression model of the form:

( ) ( ) ( )Y t a t t  (1)

where [0,1], ( )t   is noise with ( ) 0,E t  2 2( ) ,E t    ( )Y t is an observed random function, and

a(t) is an unknown regression function. Suppose that we have n numbers:

1 20 ... 1,nt t t    

where each , 1, 2,...,kt k n depends on n and 1
1maxi i it t O
n

    
 

. We have n observations:

1 2( ), ( ),..., ( ).nY t Y t Y t
The estimator of the unknown function a(t) was introduced by Priestley M. B. and Chao M. T. [1] and

defined by the expression:
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 (2)

where { , 1, 2,...}nh n   is a sequence of positive numbers monotonically tending to zero. W(t) is the function

with probability density properties. In [1] the estimator of the k-th derivative of the regression function
( ) ( )ka t is introduced as formula:

( ) ( ) 1
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1ˆ ( ) ( ),
n

k k i i i
n ik

n nn i

t t t t
a t W Y t

h hh




  
    

 
 (3)

for all 0,1, 2,..., .k m  It was assumed that (0)ˆ ˆ( ) ( ).n na t a t

Let 2: m     be a continuous bounded function. Consider an integral functional of the form:

 ( )( ) , ( ), ( ),..., ( ) .mI a t a t a t a t dt




  (4)

We have the selection ( , ), 1, 2,..., .i it Y i n  This means that

( ) ( ) ( ).i i i iY Y t a t t   (5)

To estimate ( )I a we use the plug-in estimator, i.e. consider the functional:

 ( )ˆ ˆ ˆ ˆ( ) , ( ), ( ),..., ( ) .m
n n n nI a t a t a t a t dt





 

Representation Theorem

Our consideration is based on a representation theorem which will lead to the results we are interested in.
Let us list the conditions, which the considered variables are supposed to satisfy.

Conditions on a:
(a1) The function a=a(t) is defined and continuous on [0, 1] and takes its values in the interval [-k,k];
(a2) a=a(t) has continuous derivatives up to order m inclusive;

(a3) For any 0,1,2,..., ,i m ( ) ( )ia t takes its values in [-k,k]  and ( )
1( ) ([0,1])ia L  .

.
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Conditions on :k

(1) Random values  ,k   k=1,2,... are independent, bounded and equally distributed;

() 2 20, ;k kE E     

For brevity, we will use notation for 2 2
0( , ,..., ) ( )m

m bx x x C R     function:

( ) , 0,1,...,i
i

i m
x





 


and
2

( ) , , 0,1,..., .ij
i j

i j m
x x





 
 

Conditions on :

(1) The function 2: mR R    is continuous, bounded, integrable and has bounded continuous de-

rivatives up to second order, inclusive, in some convex domain A, which contains the domain R  [-k,k]m+1;
(2) All first and second derivatives of the function   are uniformly bounded in the domain A by a

constant 0.C 

By this conditions for the function j we have for all , 0,1,..., :i j m

( , ) 0 1 0 1sup{| | ( , , ,..., ) : ( , , ,..., ) } .i j m ms s s s s s s s A C   (6)

Conditions on W:

(W1) ( ) 1;W t dt





(W2)  Function ( )W t has the compact support [ , ]   and ( ) ( ) 0;W W   

(W3) ( )W t  has continuous derivatives up to order 1;m 

(W4) There exists a constant 0,WC   for which ( )sup | ( ) | ,i
t R WW t C    0,1,..., ;i m

(W5) For any 0,1,..., ,i m ( )
1([ , ]).iW L   

Conditions on nh :

( 1)nh 0,5

max(| log |;log log )
0,n

m
n

h n
nh 

 as .n 

Denote by ( )na t mathematical expectation ˆ ( )na t :

1 1

1 1

ˆ( ) ( ) ( ) ( ).
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Then we obtain

( ) 1

1

1ˆ( ) ( ) ( ).
n

k k k i i i
n n ik

n nn i

t t t t
a t Ea t W a t

h hh




  
     

 


Let us show that there also exist expressions ( )I a , ( )nI a and ˆ( )nI a and they are finite.

Using the Taylor formula for any point 0 1( , , ,..., )ms s s s A  and some iS A  we can write

0 1 ( ) ( , ) 0 1
0 0

1| | ( , , ,..., ) ( ,0,0,...,0) ( , , ,..., ) .
2

m m

m i i i j m i j
t t

s s s s s s s s s s s s  
 

     



32 Dimitri Arabidze

Bull. Georg. Natl. Acad. Sci., vol. 8, no. 2, 2014

Accordingly, there exists a constant C such that

2
0 1

0 0

| | ( , , ,..., ) | | | | .
m m

m i i
t t

s s s s C s s
 

 
   

 
 

Hence it follows that for any bounded measurable functions 0 1( ), ( ),..., ( )mf t f t f t  from L1(R) we have

0 1| | ( , ( ), ( ),..., ( )) .mt f t f t f t dt




  (7)

And therefore ( )I a  exists.

The conditions which are imposed on the function W ensure boundness and membership in  L1(R), then

condition (W4) and (6)-(7) imply the finiteness of both variables ( )nI a  and ˆ( )nI a , for any n N .

By the Taylor formula we can write
ˆ( ) ( ) ( ) ,n n n n nI a I a S h R   (8)

where, for any 0, ( )n n nh S h  is the sum of independent random variables:

   
1

( ) ( )
( )

0 0

ˆ( ) , ( ), ( ),..., ( ) ( ) ( ) .
m

m i i
n n i n n n n n

i

S h t a t a t a t a t a t dt


  (9)

A remainder nR  has the form:

     
1

( ) ( ) ( ) ( )
( )

, 0 0

1 ˆ ˆ( ) ( ) ( ) ( ) ( ) .
2

m
i i j j

n ij m n n n n
i j

R b t a t a t a t a t dt


      (10)

Where ( )mb t  is a point on the straight line connecting the points

 ( )ˆ ˆ ˆ, ( ), ( ),..., ( )m
n n nt a t a t a t and  ( ), ( ), ( ),..., ( ) .m

n n nt a t a t a t

Let us estimate the remainder nR . Applying the standard procedure, from (7) and (10) we obtain:

 
1

2( ) ( )

00

ˆ ( ) ( ) .
m

i i
n n n

i

R C a t a t dt


   (11)

Let 2
mW  denote the Sobolev space of functions having a square-integrable continuous and bounded

second derivative with the norm
1 2( )

0 0
( )

m i
m i

g g t dt


   and the scalar product

 
1

( ) ( )
1 2 1 2

0 0

, ( ) ( ) .
m

i i
m

i

g g g t g t dt


 

Denote 2ˆ( ) .n n n mr m a a  Then we can write

( ).n nR C r m (12)

Assume

 1( ) ( ) ( ) , 1, 2,..., ,k k k
k k k k

n n

t t t tU U t W Y t a t k n
h h
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where ( ) ( ).k ka t EY t Then

 1

1 1

ˆ( ) ( ) ( ) ( ).
n n

k k k
k k k n n

n nk k

t t t t
U W Y t a t a t a t

h h


 

  
      

 
 

Therefore,
2

1

( ) .
n

n k
k m

r m U


  (13)

Let us estimate the norm of one of the summands kU  in (13) for each  k=1,2,...,n. We obtain

 

11 2 2( )1 122( ) 1

0 00 0

( ) ( ) ( )
im m

i k k k
k k kkm
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t t t t
U U t dt W Y t a t dt

h h
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2 2 2 1 1
1 1 1: ~

(1 )

m
k W n

mm m m
n n n n

C h
L M O

n h h nh nh
 

  

   
             

(14)

for sufficiently large L>0.

To estimate ( )nr m  we use the McDiarmid’s inequality, which we give here for convenience (for details see

[9]).
McDiarmid’s Inequality: Let 1 2( , ,..., )kH t t t be a real function such that for each k=1,2,...,n and some ci,

the supremum in 1 2, ,..., ,kt t t t  of the difference

1 2 1 1 1 2 1 1( , ,..., , , ,..., ) ( , ,..., , , ,..., ) .i i i k i i k iH t t t t t t H t t t t t t c    

If 1 2, ,..., kX X X  are independent random variables taking values in the domain of the function

1 2( , ,..., )kH t t t  then for every 0 

2

1 2 1 2 2
1

2{| ( , ,..., ) ( , ,..., ) | } 2exp .k k k
ii

P H X X X EH X X X
c






 
     
 
 

Let us apply McDiarmid’s inequality for the function

1 2
1

( , ,..., ) .
n

n k
k m

H U U U U


 
We have:
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1 2 1 1 1 2 1 1

1, 1,

( , ,..., , , ,..., ) ( , ,..., , , ,..., )

2 .

i x i n i y i n

n n

k x k y x y mm m
k k i k k im m

H U U U U U U H U U U U U U

U U U U U U M

   

   

 

       

And as kc  we take 2 , 1,..., ,k mc M k n    from (14), for any 0   we obtain:

2 2

22
1 1

1

2 2 2 2 2 2 2 2

2 2

2 22exp 2exp
44

2 2
2exp 2exp .

4 2

n n

k k n
mk km m mk

m m
n n

P U E U
n MM

n h n h
n L L

 


 

 


 

                          
   

            

 


We substitute here 1
2 log

m
n

L n
nh






and we have:

 
2 2 2

2 2 2 2
1 1

4 log 22exp 2exp 2log .
2

n n m
n

k k m
nk km m

L nh
P U E U n

nh L n





 

                   
 

by the Borelli-Cantelli lemma, we write

1
1 1

log
.

n n

k k m
nk km m

n
U E U O

nh 
 

 
    

 
  (15)

Using the Jensen’s inequality

 
2 22 1
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1 1 1 0 0

1 ( ) ( )
n n n m

i k k k
k k k ki

n nnk k k im m

t t t t
E U E U E W Y t a t dt

h hh


   

                 
  

 
12 2 2 2 2

2
2 2 2 2 2 2 2

1 0 0

11 1( ) ( )
(1 )

n m m
W W n

k ki m m
n n n nk i

C C h
E Y t a t dt K

n nh h h nh
 

  
 


      

 (16)

from (12), (13), (15) and (16) we conclude that 2 2
log .n m

n

nR O
nh 

 
   

 

Therefore the following statement is true.
Theorem 1.Assume that conditions (a1)-(a3), (1)-(3), (1)-(3), (W1)-(W5) and (h1)are fulfilled.Then

representation (8) is true and the remainder with probability 1 has the order

2 2
log .n m

n

nR O
nh 

 
   

 
(17)
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Consistency

In this section of the paper we use Theorem 1 to prove that the estimator ˆ( )nI a  is consistent.

Theorem 2. Let the conditions of Theorem 1 be fulfilled. If the positive sequence 1( ) , 0 1n n nh h
    is

chosen so that

2 2
log 0,m

n

n
nh 

    as n   (18)

then with probability 1 we have
ˆ( ) ( ).n nI a I a (19)

Proof. By Theorem 1 and formula (8)
ˆ( ) ( ) ( ) ,n n n n nI a I a S h R   (20)

where (1)nR o  and

  
1

( ) ( ) ( )

0 0

ˆ( ) ( ) , ( ) ( ),..., ( ) ( ) ( ) .
m

m i i
n n n n n n n

i

S h i t a t a t a t a t a t dt


 
By condition  (a1):

  ( ) 1, ( ) ( ),..., ( ) : [0,1] [0,1] [ , ] .m m
n n nt a t a t a t t k k     

This and condition (2) imply that there exists a constant C  > 0, such that

 1
0 1 0 1sup ( , , ,..., ) : ( , , ,..., ) [0,1] [ , ] .m

i m mt t t t t t t t k k C    

We can write:
( ) 0.n nES h 

1
2 2 ( ) ( )

0 0

ˆ( ) ( ) ( ) ( )
m

i i
n n n n n n

i

DS h ES h C E a t a t dt


    

 
21

2 ( ) 1

0 00

1 ( ) ( )
m n

i k k k
k ki

n nni k

t t t t
C W E Y t a t dt

h hh


 

  
     

 
 

 
2

22 2 2
1 1 2 2

0

1 1~ 0
m

W k k i m
n nk

C C t t C
h nh    



 
      

 
 (21)

because 
2 2

log 0m
n

n
nh 

  and do ( ) 0n nS h   as n   .

We can write

( ) ( ) 1( ) ( ) ( )( ) .k k
n u k

n
Ea t W u a t t uh du O

nh





 
     

 
 (22)

Hence we make the following conclusions:

i) for conclusion (17), 
1

k
nnh

 tends to zero for any k=0,1,...,m;
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ii) ( ) ( )( ) ( )k k
nEa t a t  as n  .

Summarizing the above discussion, we ascertain that if n    then

   
1 1

( ) ( )

0 0

( ) , ( ), ( ),..., ( ) , ( ), ( ),..., ( ) ( ).m m
n n n nI a t a t a t a t dt t a t a t a t dt I a       

Since ˆ( ) ( ) (1),n nI a I a o   we conclude that ˆ( ) ( ) 0n nI a I a   a.e.The theorem is proved.

Central Limit Theorem

Using our representation theorem we can obtain the limit distribution property for the integral functional

 
1

0

ˆ ˆ ˆ ˆ( ) , ( ), ( ),..., ( ) .m
n n n nI a t a t a t a t dt  

Consider the difference
ˆ( ) ( ) ( ) ,n n n n nI a I a S h R   (8)

where for any 0,nh   ( )n nS h  is the sum of independent random variables

   
1

( ) ( ) ( )
( )

0 0

ˆ( ) , ( ), ( ),..., ( ) ( ) ( ) .
m

m i i
n n i n n n n n

i

S h t a t a t a t a t a t dt


   (9)

nR  is a remainder having the form:

     
1

( ) ( ) ( ) ( )
( )

, 0 0

1 ˆ ˆ( ) ( ) ( ) ( ) ( ) .
2

m
i i j j

n ij m n n n n
i j

R b t a t a t a t a t dt


      (10)

Clearly,

( ) 0n nES h   and 0nER   as n  (23)

Moreover

   
21

2 2 ( )
( )

0 0

( ) , ( ), ( ),..., ( ) .
m

m
n n i n n n

i

E S h t a t a t a t dt 


 
  
 
 
 (24)

and Var 0nR   as n  .

Using appropriate conditions, we have to prove that the variable ˆ( ( ) ( ))n nn I a I a  is asymptotically

normal and calculate the limiting variance. For this, according to the theorem and formulas (8), (23) and (24),

we have to show the asymptotic normality of the variable ( )n nnS h . As follows from (10), in this case it

suffices to study this property for the variables:

 
1

( ) ( )1
( )

0 0

1( ) , ( ), ( ),..., ( )
m

i mk k k
k k i n n ni

n nni

t t t t
d Y t W t a t a t a t dt

h hh




       
 

  (25)

It can be easily verified that

 
1

( ) ( )1
( )

0 0

1( ) , ( ), ( ),..., ( ) .
m

i mk k k
k k i n n ni

n nni

t t t t
Ed a t W t a t a t a t dt

h hh




       
 

  (26)
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Thus we consider the sequence of independent random variables:

 ( ) ( , ) ( ) ( ) ( , ) ,n k k kf k n k Y t a t n k    

where

 
1

( ) ( )1
( )

0 0

1( , ) , ( ), ( ),..., ( ) .
m

i mk k k
i n n ni

n nni

t t t t
a n k W t a t a t a t dt

h hh




       
 

 

Let consider the sum 
1

( ) ( , ) .
n

n n kk
S h n k 




Let ,k nF be the probability distribution function of a random variable ( , ) kn k   and F  be the distribution

function of a random variable - k . The Linderberg’s condition is written in the form 0, lim ( ) 0nn
L 


  

where

 1/ 2
2 2

,1 1

2 2
1

( , ) ( )
( ) ,

( , )

n n
k nj k

n n

k

x J x n k dF x
L

n k

 


 

 



 
 

 
 


here J(A) is the indicator function of the set A. It is easy to see that

 2
12

1( ) max ( , ) ( )n j nL x J x n j dF x 
   

where

 1/ 2
2

1

( , )
( , ) .

( , )
n

j

n j
n j

n j










It remains to show that 1max ( , ) 0j n v n j    as n  . But since

1 1
1max ( , ) ,j n m
n

n j O
nh

  

 
   

 

we have

1
1max ( , ) .j n v n j O
n 

 
  

 

Thus the Linderberg’s condition is fulfilled and we can conclude that the theorem is valid.

Theorem 3: Let the conditions of Theorem 1 be fulfilled. Then if 0nh   and 1m
nnh    as n   ,

we have   2ˆ( ) ( ) (0, ),n n dn I a I a N r   where

 
21

2 2 ( )
( )

0 0

, ( ), ( ),..., ( ) .
m

m
i n n n

i

r t a t a t a t dt 
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Applications

Let us consider the integral functional 
1 2

1
0

( ) ( ) .I a a t dt 

Then 2
0 1 0( , , ,..., )mt x x x x   for 0 [ , ] [ , ], 0.x b b k k b      Thus 

212 2

0
4 ( ) .r a t dt    

 
And, using the conditions 0nh   and 1m

nnh    as n  , we have the convergence

  2ˆ( ) ( ) (0, ).n n dn I a I a N r 

For the functional 
 21

2 0

( )
( )

( )
a t

I a dt
a t


   we obtain 
2
1

0 1
0

( , , ,..., ) .m
x

t x x x
x

 

Then, assuming that [0,1] ( ) [ , ], 0,t a t a b b a      we have

 
 

 
 

 
 

2 21 2 2 2
2 2 2

2 2 2
0

( ) (1) (0)2 ( ) (1) (0) 1 1log (1) log (0) .
( ) (1) (0) 2 2( ) (1) (0)

a t a aa t a ar dt a a
a t a aa t a a

 
                      

        


For 0nh   and 2
nnh   as n  , we have the convergence

  2ˆ( ) ( ) (0, ).n n dn I a I a N r 

Let us consider the functional  3 ( ) ( ) , 1.sI a a t dt s



   Then 0 1 0( , , ,..., ) ,S

mt x x x x   for

0 [ , ] [ , ], 0.x b b k k b      Therefore

21
2 2 2 1

0

( ) .sr s a t dt 
 
  
 
 


And for the condition 0nh   and nnh   as n   ,we have the convergence

  2ˆ( ) ( ) (0, ).n n dn I a I a N r 

Let us now take the functional 4 ( ) ( ) log ( ) .I a a t a t dt



   Then for some sufficiently large 0,b K   if

00 x b   we have 0 1 0 0 0( , , ,..., ) ( ) log .mt x x x x x x    Let us extend the definition of the function  by

defining ( ) 0x   for .b x b    Assume that [0,1] ( ) [ , ], 0t a t a b b a      and .b b  Then

 
21

2 2

0

( ) 1 log ( ) .r a t a t dt
 
   
 
 


And for the condition 0nh   and nnh   as n  , we have the convergence

  2ˆ( ) ( ) (0, ).n n dn I a I a N r 

Iterated Logarithm Law

Applying the well-known iterated logarithm law from Kuelb’s (paper [10]), we ascertain that the following
statement is true.
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Theorem 4. If the sequence hn is chosen so that

log log ,n
nR o

n
 

   
 

then

 ˆ( ) ( )
lim sup .

2log log
n n

n

n I a I a
r

n


 

Indeed, it can be easily verified that

   ˆ( ) ( ) ( , ) ( ) ( , ) ( )
lim sup lim sup .

2log log 2log log
n n k k

n n

n I a I a n a n k Y t a n k a t
r

n n 

 
   

maTematika

pristli-Caos regresiis funqciis integraluri
funqcionalebis Sesaxeb

d. arabiZe

v. komarovis fizika-maTematikis sajaro skola, Tbilisi,

naSromSi ganxilulia regresiis funqciis integraluri saxis arawrfivi integraluri
funqcionalebis statistikuri Sefasebis problema. TviT regresiis funqciisaTvis da
misi warmoebulebisaTvis aRebulia pristli-Caos cnobili Sefasebebi. amocana bunebrivad
ganixileba sobolevis Sesabamis sivrceSi. naxsenebi funqcionalis Sefasebad Semo-
Tavazebulia e.w. `Casmis~ Sefaseba. naCvenebia Zaldebulobisa da asimptotiurad norma-
lurobis Teoremebis samarTlianoba. dadgenilia krebadobis rigebi. zogadi meTodika
gamoyenebulia ramdenime kerZo SemTxvevisaTvis. aq gadawyvetilia pristli-Caos regresiis
funqciis fiSeris informaciuli integralisa da Senonis entropiis Sefasebis problema.
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