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ABSTRACT. In the present paper thermoelastic solid is considered within the framework of Lord-
Shulman non-classical theory of thermoelasticity. Applying variational approach initial-boundary value
problem corresponding to the three-dimensional model is investigated in suitable spaces of vector-valued
distributions with values in Sobolev spaces. An algorithm of approximation by two-dimensional problems
of the three-dimensional dynamical model for plate with variable thickness is constructed, when densities
of surface force and normal component of heat flux are given on the upper and the lower face surfaces of
the plate. The obtained two-dimensional initial-boundary value problems are investigated in suitable
function spaces. Moreover, convergence of the sequence of vector-functions of three space variables
restored from the solutions of the constructed two-dimensional problems to the solution of the original
three-dimensional initial-boundary value problem is proved and under additional conditions the rate of
convergence is estimated. © 2014 Bull. Georg. Natl. Acad. Sci.

Key words: dimensional reduction algorithms, error estimates, nonclassical models of thermoelastic sol-

ids, plates with variable thickness.

Various mathematical models for thermoelastic solids were developed to eliminate shortcomings of the
classical thermoelasticity, particularly, infinite velocity of thermoelastic disturbances. One of such type mod-
els was obtained by H. Lord and Y. Shulman [1], where instead of the classical Fourier law of heat conduction
Maxwell-Cataneo law is used, which is a generalization of the classical law and depends on one relaxation
time. For Lord-Shulman nonclassical model the problem of propagation of a thermoelastic wave was studied
and domain of influence result was obtained [2] in the classical spaces of twice continuously differentiable
functions. Applying method of potential and theory of integral equations the problems of stable and pseudo
oscillations for Lord-Shulman nonclassical model were studied in [3]. Note that solution of the three-dimen-
sional initial-boundary value problems is a rather difficult task and it is important to construct algorithms of

approximation of them by two-dimensional or one-dimensional problems. One of the dimensional reduction
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methods for plates with variable thickness in the classical theory of elasticity was suggested by I. Vekua in
[4], where a hierarchy of initial-boundary value problems defined on two-dimensional space domain in dif-
ferential form was obtained. Mathematical results on the relationship between the two-dimensional hierarchi-
cal models constructed in [4] and three-dimensional one in static case first were obtained in the spaces of
classical regular functions in the paper [5], and the reduced two-dimensional models for thin shallow shells
were investigated in Sobolev spaces in [6]. Later on, various hierarchical models were constructed and
investigated applying Vekua’s reduction method and its generalizations (see [7-11] and references given
therein).

In this paper we study Lord-Shulman nonclassical three-dimensional dynamical model for thermoelastic
solid and in the case of plate with variable thickness we construct and investigate an algorithm of approxima-
tion by two-dimensional problems. We consider initial-boundary value problem corresponding to Lord-
Shulman three-dimensional model and applying variational approach we obtain the existence and unique-
ness result in suitable spaces of vector-valued distributions with values in Sobolev spaces. We construct a
hierarchy of two-dimensional problems approximating the original three-dimensional one for plate with vari-
able thickness, when densities of surface force and normal component of heat flux are given on the upper and
the lower face surfaces of the plate. We investigate the constructed two-dimensional initial-boundary value
problems in suitable function spaces. Moreover, we prove that the sequence of vector-functions of three
space variables restored from the solutions of the constructed two-dimensional problems converges to the
solution of the original three-dimensional problem and under additional regularity conditions we estimate the

rate of convergence.

We denote by w2 (D)=H"(D), r=1, r e R, the Sobolev space of order » based on the space I? (D)
of  square-integrable  functions in DcR?, peN, in Lebesgue sense,
H' (D) =[H" (D)), L*(D)=[L*(D)I’ and L’ (D) =[L{)F, s>1, s e R, where T isa Lipschitz surface.
For any Banach space X, C°([0,7];.X) denotes the space of continuous functions on [0,7] with values in
X, I? (0,7;X) is the space of such functions g:(0,7) > X that ||g(t)||X el? (0,T). We denote by
g'=dg/dt the generalized derivative of g € I? 0,T; X).

Let us consider a thermoelastic body with initial configuration Q = R®, which consists of homogeneous

isotropic thermoelastic material and the body is clamped along a part ', of the boundary " = Q) and on the

remaining part I';, ='\I", surface force with density g =(g;):I'; — R® is given, the temperature @ van-
ishes along l"g cTI' and on the remaining part 1"]9 =T\ 1“8 the normal component of heat flux with density

ge : 1"19 — R is given. The nonclassical dynamical three-dimensional model of the thermoelastic body Q

obtained by H. Lord and Y. Shulman in differential form is given by the following initial-boundary value

problem
Pup o
Pz —Zg 2 e (WS +2p1e; (W) =105 | = fiin Qx(0,7), i=1,2,3, (1)
J=L70 0 pel
00  °0 3,520 R ou o
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3
Z(lZepp(u)éy+2ueU(u) nos; |v,=g on Ix(0,T), €))
J=l =1
u=0 on Iyx(0,7), KZ—V =g’ on T{x(0,T), 0=0 on TYx(0,T), @)
Jl Yj

ou.
u; (%, 0) = ug; (x) | %(x,0)=uu(X), 0(x,0) = 6, (x) , %(x,O)z@,(x) in Q, i=1,2,3, ()

where & is the Kronecker’s delta, u = (u,): Qx (0,7) — R’ is the displacement vector-function of
thermoelastic body, 6:Qx(0,7) — R is the temperature distribution, A, 4 are Lamé constants, p is a
mass density, x >0 is the thermal conductivity coefficient, y >0 is the specific heat at zero strain, 77 isthe
stress-temperature coefficient, ®; >0 is a constant reference temperature and 7, is the relaxation time,
f=(f)Q-> R’ is the density of applied body force and fg :Qx(0,7) > R is the density of heat
sources, u, = (uy;) and u; =(u;;) are initial displacement and velocity vector-functions, 8, and 6, are

initial distributions of temperature and the rate of change of temperature. Note that, in the case of 7, =0 the
nonclassical three-dimensional model (1)-(5) coincides with the classical linear three-dimensional model for
thermoelastic bodies.

To investigate the existence and uniqueness of weak solution of the three-dimensional initial-boundary
value problem (1)-(5) we consider the following variational formulation: Find the unknown vector-function

ueC’([0,T;V(Q)), u' eC’([0,T;V(Q)), u"eL”(0,T;V(Q)), u"e L”(0,T;L*(Q)), and function
0eC’([0,T1;V°(Q), 0 e L”(0,T;V°(Q)) . 6" € L*(0,T; L* () , which satisfies the following equations
in the sense of distributions on (0,7),

—(pu ), V)LZ(Q) +a(u(.),v)— 1{9 Z J = (f,V)Lz(Q) +(g, V)Lz(rl), VveV(Q), 6)
p=1""p LZ(Q)

i(xroe'(.),go)ﬁ(m H(Z2000) 1 + 4 (00).0) +

7)
ou,, i (
+®o’{z +r02 J =0 i T (&P ey VeV (),
p=l % ea
together with the initial conditions
u(0)=u,, u'(0)=u,, 6(0)=6,, 0'(0)=6, ®)
where V(Q)={veH (Q):tr(v)=0 on I';}, Q) ={pe H (Q);tr(p) =0 onT§},

tr:H'(Q)—> H'*(T) and 1r: H' (Q) > H"?(T") are the trace operators,

a(v,v) = j {AZ (V)Zeqq(v)+2yz (V)elj(v)}dx, Vv,V e V(Q),

i,j=l1
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0 2\ ox; Ox;

3 ~
ov. Ov;
LG =k[ YL veger @, el-,-(v)=1(l+—f}i,j=1,z,3,
— Ox . Ox
Q Jj=1 J J J i
(-,-)LZ(Q), (-,-)LZ(Q), ("')Lz(l"]) and ("')Lz(r]) are scalar products in the spaces L (Q), I? Q), L’ (T,) and

I’ (T')), respectively.

For initial-boundary value problem (6)-(8) corresponding to Lord-Shulman nonclassical dynamical three-
dimensional model for thermoelastic body the following theorem is valid.

Theorem 1. Suppose that, uy, e H(Q) N V(Q), u, e H* " V(Q), 6, e H*(Q) NP (Q), 6 ,eV°(Q),
feC’([0,T;H'(Q), 1" e 2(0,T;12(Q)), g.g.g".g" € *(0,T;L*(M), 19, 1% e 12(0,T; I*(Q)).

ge,gel,geﬂ el’ (O,T;L4/3 (1",6 )), and the following compatibility conditions are valid

3 3
gl-(O):Z:(AZepp(uo)éij +2pe;(u)—n6,5; |, 3
7= p=l 06
s i=1,23,8"(0) =YKk, ©)
' =1 ]
gi(o)zz(lzepp(u])éij +2,ueij(u])_n9]5iij ! !
Jj=1 p=l1
Ifp>0,0,>0, u>0,34+2u>0, x>0, x>0 and 7, >0, then the initial-boundary value problem

(6)-(8) possesses a unique solution and the following energy identity is valid

2
L*(Q)

2

! ” 2’ t
pllu+zou"| . [a’©O@),0@)dr+
0

+a(u+zyu’,u+7yu’) +®i [10+7,60"|]
0

+(;—°a9 (0,0) = p | 0'(0)+7u"(0) |1, +a(u(0)+7,u'(0), u(0) +74u'(0)) +
0

+®io 1000)+740'(0) I +(;_<;a9 (6(0),6(0)) +2 { (F(0) + 7o (2), /(D) + Tgu"(0)) 2 AT +

2t 0 26 20, o
+— (7 (0),0(2) +7,0'(7)) 2, dT +—— | (&7 (), 0(2)) o 1o, dT +——(g",0) > 10\ —
®0£ Q) @0!; > (r{) 0, (1)

2TO 0 27,'0 t o' , ,
_®_O(g (0)!9(0))L2(rf) _®_OJ-(g (T)SQ(T))LZ(FIF’)dT + 2(g + Tog,u + Tou )Lz(rl) -
0

~2(g(0)+7g/(0),u(0) + 70 (O), 2 ) =2 (') + 702" (D), u(®) + 76U (D)) . 7, Vit €[0, ]
0

Let us consider particular case of thermoelastic body, when Q is a plate with variable thickness, which

may vanish on a part of its boundary, i.e. body that occupies three-dimensional Lipschitz domain of the
following form

Q={(x,x;,x3) € R3; h(x,%) <x3 < h+(x1,x2), (x,x,) € 0},

where wcR? is a two-dimensional bounded Lipschitz domain with boundary g,
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e (@)n C,i’!, (wwy) are Lipschitz continuous in the interior of the domain @ and on y < dw to-
gether with the first and second order derivatives, A" (x;,x,)>h (x,x,), for (x;,x,) e ®U7, 7 Cow isa
Lipschitz curve, 4" (x;,x,)=h" (x;,x,), for (x;,x,) € dw\7 . The upper and the lower faces of Q defined

by the equations x3 =" (x;,x,) and x3 =4~ (x;,X,), (x,X,) €@, wedenote by I'* and "~ , respectively,

and the lateral face, where thickness of € is positive, we denote by

F=6Q\("ul)= {(x,%5,x3) € R3;h_(xl,x2) <x3<h"(x,%), (x,x,)€7}. We assume that plate is
clamped and the temperature 2] vanishes on a part
Ty = {(x, %, %) € R¥ 1 (x,,) < x3 < ¥ (x,%5), (x,,X,) € 7} of the lateral face T, 7, < 7 isaLipschitz
curve, and on the remaining part I'; = F\lN"_O of the boundary the densities of surface force and normal
component of heat flux are given, i.e. [, =T§ =T, and T', =T"! = 1"\1:_0.

In order to construct an algorithm of approximation of Lord-Shulman nonclassical three-dimensional

model for thermoelastic plates by a sequence of two-dimensional problems let us consider the subspaces
Vi(Q), V2(Q), Vy(Q) and Hy(Q) of H(Q)NV(Q), HX(Q)NV(Q), V(Q) and L2(Q), respec-
tively, N = (N, N,,N;), consisting of vector-functions whose components are polynomials with respect to

the variable of plate thickness x;,

N,
51 1)7 %
VN =(vNi)a vNi = ZZ(’; +EJVN1' Pri(z)a VNi eLz(a)) s OSI"I SNI s 1= 1,2,3 D
=0
~h Y_h - R +h . :
where z =23 , h= h 3 h , h= . In addition, we consider the subspaces V}s,z (Q), V,gg (Q)
0

and H ,(i,g Q) of H*(Q) V' (Q), ¥?(Q) and I*(Q)), respectively, which consist of the following func-

tions

&1 1) r
= 2i{ 3o 290y, <oy, 02r 2,
r=0

Since the functions A* and 4~ are Lipschitz continuous together with their first and second order

derivatives in the interior of the domain ¢ , from Rademacher’s theorem [12] it follows that 4", aahi and
60(6ﬂhi are differentiable almost everywhere in " and 60(hi,60(6ﬂhi,60(6ﬂ65hi el”(w) for all
subdomains @ , ; cow, a,B,0 =1,2. Therefore, the positiveness of 2 in @ implies that for any vector-
function vy = (vNi)f’:l eVSJ (Q) the corresponding functions :ZN,- eH® (a)*) , for all ", ;c W, 1.

wwi € H (0),0<r <N, i=1,2,3.Similarly,if Vy = ("x)is1 € VR(Q) or vy = ()2 € V(@) , then

1

i i — i
. . 2 * 1 * * * . 2
the corresponding functions vwi e H* (@ ) or vw e H (0 ) forall o , o cw,ie vNn e Hj (o) or

1

‘I’Ni € H,loc (w), 0<r, <N,, i=1,2,3. For functions from the spaces V}s,z (@) and V,gg (Q) we also have
0
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”

Py, € H}, (o), if Py, € Vg;z (Q) and groNg e H, (o),if Py, € V,gg (©), 0<r < N,.Moreover, the norms
||'"H3(Q) , "'"HZ(Q) , "'"H'(Q) and "'"Hz(Q) ) "'"H‘(Q) in the spaces H’(Q), H*(Q), H'(Q) and H*(Q), H'(Q)

. 7 7
» Nips =N+ N, +N;+3, with components vn;, vy = (vn;) »and

g+ of vector-functions vy e[H} (0)]"* ,

J. and ||

define weighted norms

*f[seskeste o [[°f [k o 9**’

Nl,Z,} Nl,Z,}

N e[Hp (@)1, vx e [H]},. ()]

G, €[Hpp (@)™, Gy, e[Hi (@], with components @y . @y, =(py,). such that

“VN ook :||VN||H3(Q) B “VN s :”VN"HZ(Q) s “VN * = "VN"H'(Q) and “gﬁ}ve 2 = “gDNe HZ(Q) B
“@Ne e Hﬁﬂivg Q) - Using the properties of the Legendre polynomials, we can obtain explicit expressions
for the norms. ||{[sses » ||} 5 [|]l% 5 " o+« and || o« - Particularly, thenorm |||, is given by
- ShN INIES 1 327 2 vt I
“VN PN ) pAC F A= vl A v+
i=11,=0 Si=1 (@) *(w)
1/2
2 N 1 5i 7 no P
0D G +5)(6ah+ — (=10, kY vni =20, vai+ (r + R0, hvni ’
a=l|s;=r+1 Lz(w)

where we assume that the sum with the lower limit greater than the upper one equals to zero.

7 r - —
For components vy; and ¢ N, of vector-functions vN e[H }Oc (a))]N‘l3 and @ N, € [H ,'w, (a))]N"” , which

satisfy the conditions “;N“* <o and "@Ng g« < we can define the traces on 7 . Indeed, the corresponding

vector-function vy :(vNi)f’:1 and function @y, of three space variables belong to the spaces

W) c H'(Q) and V,gg (Q) c H'(Q), respectively. Consequently, applying the trace operator on the

space H'(Q)) we define the traces on 7 for functions vl;l- and ¢y,
ri h+ - h+
ir;(oni) = [ 1) | B (2)ds, 1r3(0) = [ 1y, ) B2y, 15 =0, i=13, r=0.N, |
s s

Since the vector-functions vy = (vy;) from the subspaces vy (€2) and Hy (), and the functions @y,

from V,gg (©2) and H ,(i,g (€2) are uniquely defined by functions Vlili and ¢, oftwo space variables, therefore

considering the original three-dimensional problem (6)-(8) on these subspaces, we obtain the following

hierarchy of two-dimensional initial-boundary value problems: Find
iy € CO([0,T]; Py(@)), Wy € C°([0.T; Vy(@)), % € L*(0,T; Vy(w), W €L(0.T; Hy(w)) and
Ey, €CO(0.TLVY (@), )y, € L*(0,T:Vy (@), Ch € L™(0,T; HY, (@), which satisfy the following

equations in the sense of distributions on (0,7),

Bull. Georg. Natl. Acad. Sci., vol. 8, no. 2, 2014
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R (T )+ g T) =, (G, T) = I (), Wiy €7 (@), (10)
LRG Gy, + 7ol By )+l By oy, )+ O Ll Gin + 7o) = Ly B (1)
di Voo 02Ny T Ny K5 N 2PNy IR0 PN o) = TNy 1PN
forall ¢ N, € 17,39 (@), together with the initial conditions
Wy (0) =¥y, W (0) =iy, ‘:NH(O)ZENQO’ 5/(19(0):5/\191’ (12)

where Py () = {iy = (i) € [Hh, (0] [yl <o0,tr; (vai) =0 00 7,7 = 0,N;.i =13},

Nigs.

L (@) = (Fy = i) € LHL, (@)1 3y, <001

V2 (@)= iy = (i) eLH2 (@) AT (@); sl <o0}

7

V(@) = (i = (vni) €[H (@] A P (@) o <0} Hx (@) = (i = (vai) €

3 N, 2

Nos. 5 P = M2 _ - r
(2 @)1 [l = 2 2 v < (@) =6y, =(@y,) €[Hpp ()]
i=1r,=0 L (w)
||¢Ng e*<003 try(gDNg):O on fo’r:O’Ne}’

P02 (@)= By, = @x,) LHE @1 AT @) |3, <3, (@) = 1By, = (0y,) [L2 (@)%

2

N,

- 2 0. _ r .

||§DN8 i () = E Hh 1/2 Py, <o}, the bilinear forms Ry, R,(z,g , AN a%g , bNNe , bfwg are defined by
No r=0

the corresponding forms in the left-hand sides of the equations (6), (7) and by taking into account the

(o)

properties of Legendre polynomials, we obtain the following explicit expressions

3N . . N,
. : 1 17 . . 1 1r
Ry (Un>VN) =ZZ[’? +5ijZyNi vNi do, R/?/G (WN8a¢N8)=Z(r+EJZJ.ZWNg PN, do,
o r=0 o

i=l r,=0

Ny 3 3, 3, -
oxtivi)= 3 (r43)] %{AZepp(ﬁN>Zeqq (r)+2u Y. eg@@eg(vw]m,
p=1 q=1

r=0 ® i,j=1

r=0

0 — — Jo 1 1 2 1. * r+s Jo A 1 § r+s
a5, Ty, By,)= 2| r+5 |k 3| 26D (=D [ DG+ Doy, (=D J+

N

201 . - o hr No, Wy 1 , .
+Z; O Wy, —(r+)—2=y - Z ”(s+5j(6ah+—(—l) "0,h ) x

a=l h s=r+l

N
’ o & 1 .
X| Oa gDNe_(r+1) P PNy~ Z 3 (§+Ej(aah+_(_l)r+saah_) do,

h S=r+l
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Ny N, s
b, By, »7n) =By, Gins B, ) = UZ(”%N [#(Z(s+%)VN3(1—(—1)’”)J+
r=0

[9) s=r

Na s r
+Z; 0, VNa (7"+1)—hVNa z v;a (s+%j(5ah+—(—l)r”5ah_) Py, do,

a=1 s=r+l

r - 1 r r ’}: - L.
where N, =max{N,,N,,N3}, e;(Vy) =E(ai(ij)+6j(vNi)+eij(vN)j, i,j=12,3,

r r r Nmax N
éij(vN)z r;l_l(@ithj+athij— —(s+%j(ij(aih+ _(_1)r+saih—)+
s=r+l
S Nmax ;o ;o N N
+vN1-(a,-h+—(—1)’“a,-h-)j+2 %(H %j(l_(_l)m)((z 1>2(z 254 U 1)(1 N j

The linear forms Ly, L?\,g are defined by the right-hand sides of the equations (6), (7) and are given by

3 N 7 7 [P
- - 1 17% ! _ ” 17% i
Ly(iy) = ZZ[}; +EJ '[ZVNi [fi+g§i/1+ +gni A (1) Jda)+ JzVNi gniin

i=l =0 P "

1, (@y,) = Z[H jj goNg[f + g A+ g A (-1 Jdmj coNggNgdn

N

h+
where 7, = 7\, Au =1+ (0,1 ) + (8,1 )2, v-JvP(z)dx3, for all functions v e 12(Q), r € NU{0}
J

+ 0 - 60— gl
anis gN: and gn;, &y, arerestrictions of

+
J=1 p=l

3 3
gni() =g+ Z [’lz epp (WN0)Oy +2e;(Wno) =118y, 05 ]V.f

L

3 3
+Z[/lzepp(wm)5y +2ﬂeg/(WN1)_77§Nel5y]Vj t—g,(0)-g/(0), i=1,2,3,

J=1\ p=l T,

S %0,
g, (=g (r)+Zr< =

J ]"I

-g%(0)

on the upper I'"and the lower T~ faces of the plate, respectively, wy, € V§ (), wy, eVI% (Q),
$ny0 € Vls(;2 Q), ¢y, € Vgg () correspond to the initial data Wy, Wy 4 Ny 4 n,1 of the two-dimen-

sional problem.
For the two-dimensional initial-boundary value problem (10)-(12) for thermoelastic plates constructed

within the framework of Lord-Shulman theory the following existence and uniqueness theorem is proved.

Bull. Georg. Natl. Acad. Sci., vol. 8, no. 2, 2014
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Theorem 2. If two-dimensional domain o and functions h*, h~ are such that Q c R’ isa Lipschitz

r

domain, p>0, ©,>0, u>0, 32+2u>0, x>0, x>0, 7,>0, the functions }l éNi,

gni (r.=0,..,N;,i=1,23), 19, g%e (r=0,...,Ng), g,%: satisfy the following conditions

- Ti

Ta = (1) € COQO.TL AL (@), K2 (1), h V2 (f) € 2O, (@),

g 22 (gn) 22 (gn) A (gR)" € (0.7 L (@),
W g (g ) (g (gn) " € PO.T L (1), 1 =0, N, i=1,2.3,

V20 210y e 120, T I (o)) » A 20 (e A (g e (0,75 1Y (),

r r

R g (R, ) T (g, ) e O, T L () 5 7= 05 Ny,

and Wy € 1713 (w), Wy € Vﬁ (0), Cj/veo € 17}6;2 (), ng] S 17,59 (w), then the dynamical two-dimensional

problem (10)-(12) possesses a unique solution.

Thus, we have constructed a hierarchical algorithm of approximation of Lord-Shulman non-classical
three-dimensional model for thermoelastic plates with variable thickness by two-dimensional problems. In
the following theorem we present the results on the relationship between the obtained two-dimensional and
original three-dimensional initial-boundary value problems, but in order to formulate the corresponding

theorem let us define the following anisotropic weighted Sobolev spaces

HYP(Q) = (v hFo3v e P(Q),0<k <5}, 5N,
HLQ’S Q) = (v 1050y e I2(Q), 0 h 0k v e IF(Q),1 <k <5,r=0,1,i=1,2,3,a =1,2},
Q) = (v h* 10y 9[0Ty e IX(Q), 110, 030] v e 1P (Q),h* 10,0 ,h* 05 v € L (Q),
1<k <5,k 20, h 0 s kv e Q)1 <k <s+la, f=1,2,r,7 =0,1,1<i,j <3},
H>4(Q) = v e H>(Q);0,h°00v e [(Q), p =1,..,4,0,0 sh*030] v e L(Q),0,h0;030,v € L' (Q),
W0, h*0sh 0 sh 05 v e I (Q), 10,0 405h 04y € I (Q),hd507y ' h*0;030,,05 v e L* (L),
W'0,0% W 0 5h*05050] v € I (Q),h0,,0,,0505v € L (Q), 7,7, , 8,6 =1,2,i =1,2,3}

which are Hilbert spaces with respect to the corresponding norms.

Theorem 3. If p>0, ©,>0, u>0, 34+2u>0, x>0, k>0, 7,>0, uy e H(Q)NV(Q),
u, eH NV(Q), 0, H(Q)nV?(Q), 0,eV’(Q), feC’(0,T]; H'(Q). f,f" e *(0,T;L*(Q)).
g.g.g"g" e *(0,T;L"*(I))), fe,fe, e I2(0,T; I*(Q))» ge’ge”ge” e I*(0,T;L**(I))) and the com-
patibility conditions (9) are valid, vector-functions of three space variables Wy € Vli (Q), wy, € Vli (Q),
$nyo € Vls(;2 Q), {1 € V,gg (Q), corresponding to the initial conditions Viy, € V(®), iy, € Ve (),

5N00 € 17,6(;2 (), ENal € 17;39 (®) of the two-dimensional problems (10)-(12), tend to u,, w,, 0, and 6, in
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On Approximation of Lord-Shulman Model... 13

the spaces H*(Q), H*(Q), H*(Q) and H'(Q), respectively, as N, =min{

1<i<3

sequences of vector-functions (Wx (1)) and functions (Cy, (1)) restored from the solutions Wy and ’ N, of

N;,Ng} = o, then the

the reduced two-dimensional problem (10)-(12), tend to the solutions u(t) and 0(t) of the original three-
dimensional problem (6)-(8),

wy (t) > u(t) in H'(Q),
wi(t) > u'() in H'(Q),
Wi (1) > u'(0) in L*(Q), forall te[0,T], as N, — .
Sy, (> 0() in H'(Q),
$y, (> 0'(0) in I(Q),

In addition, if ¢"w/dt" € I?(0,T; (H;;"S" Q)*), r=0,1,2, u" € [*(0,T; (HZ;O’S3 ()’) . Sps 51-57,5, €N
d"0/dt" e I2(0,T; H;;"Sf’ Q), r=0,1, 8" 12(0,T; HS;O’Sg (Q)), s0,s0.59 €N, Sou5y,51,50 15,22,

~ 5 A ~ ~ ~ =0
and uy € (B, Q) n(BH(Q), u e (H(Q) 0y £ (Q),

L3 - o~ =0 = ~ o~ 0~ " - - =
O H " (Q),5),5,5 .5 €N, 5.5.5,5 > 2, then for appropriate initial conditions Wy, Wi S,0

4 n,1 the following estimate is valid

"“ ~—WN "CO([O,T];H‘(Q)) + ||u' —Wy "CO([O,T];H' @yt ||u" -

+lor-¢i,

@) "
< 1

C'(OTEHNQ) (N, )*
min

- +
(0,112 () “ —Cw, o(T,Q,I'y, " ,N,Ny),

where s =min{sy — 1,5, — 1,5, =1, 53,55 = 1,0 —1,55,5, —3/2,5,-3/2,50 =3/2,50 —1} and

o(T,Q,T,h", N,Ng)—>0,as Ny, —>o0.
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